
6.4 Permutations with Forbidden Positions

Goal: To derive a more general formula for counting the number
of permutations with arbitrary forbidden positions.

Recall in section 6.3, we looked at permutations with forbid-
den positions A derangement corresponds to non-attacking rook
placement with forbidden positions along the diagonal (j, j), for
j = 1, ..., n. In this section, we will cover arbitrary forbidden
positions.

Let Xj ⊂ {1, ..., n} for j = 1, ..., n.

Defn: P (X1, X2, ..., Xn) = the set of permutations i1i2...in of
{1, ..., n} such that ij ̸∈ Xj .

Defn: p(X1, X2, ..., Xn) = |P (X1, X2, ..., Xn)|

Ex: P (X1, X2, ..., Xn) corresponds to the set of derangements of
{1, ..., n} if Xj = {j}. Thus Dn = |P ({1}, {2}, ..., {n}|

Recall, we can visualize permutations with forbidden positions
via n× n chessboards.

Ex: Derangements of {1, 2, 3} :
Xj = {j}.
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Non-derangement example:
n = 4, Xi = {j, j + 1}, j = 1, 2, 3, X4 = ∅.

P (X1, X2, ..., Xn) = P ({1, 2}, {2, 3}, {3, 4}, ∅)
= {3124, 3412, 3421, 4123}.

p(X1, X2, ..., Xn) = p({1, 2}, {2, 3}, {3, 4}, ∅)
= |{3124, 3412, 3421, 4123}| = 4.

We can use the inclusion-exclusion principle to calculate
p(X1, X2, ..., Xn) (although in many cases, the computation can
be tediously long and beyond computer capabilities for large n).

Thm 6.4.1:
p(X1, X2, ..., Xn) = n!− r1(n− 1)! + r2(n− 2)!− ...+ (−1)nrn.

Proof (Similar to the proof of Thm 6.3.1.):

By the inclusion-exclusion principle,

p(X1, X2, ..., Xn) =
|S| − Σn

j=1|Aj |+
∑
i,j

|Ai ∩Aj | − ...+ (−1)n|A1 ∩A2 ∩ ... ∩An|

where

Let S = the set of permutations of {1, ..., n}. Then |S| = n!.

Let Aj = set of permutations i1i2...in such that ij ∈ Xj

(for a fixed j).

Note there are |Xj | ways to place a rook in the jth position.
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There are (n − 1)! ways to place the remaining n − 1 rooks so
that the permutation belongs to Aj .

Thus |Aj | = |Xj |(n− 1)!.

Σn
j=1|Aj | = Σn

j=1|Xj |(n− 1)! = (n− 1)!Σn
j=1|Xj | = r1(n− 1)!

where r1 = Σn
j=1|Xj |.

Note r1 = number of ways to place 1 nonattacking rooks on an
n× n chessboard so that the rook is in a forbidden position.

Let’s now look at Aj ∩Ak.
i1i2...in ∈ Aj ∩Ak, then ij ∈ Xj and ik ∈ Xk.

There are |Xj | ways to place a rook in the jth position and |Xk|
ways to place a rook in the kth position in forbidden positions
IF we do not restrict to non-attacking positions. But since we
require non-attacking positions, placing the two rooks in the ith
and jth columns are not independent events.

Let ρi,j = number of ways to place 2 nonattacking rooks in col-
umns i and j on an n× n chessboard so that each of the 2 rooks
is in a forbidden position.

There are (n − 2)! ways to place the remaining n − 2 rooks so
that the permutation belongs to Aj ∩Ak.

Thus |Aj ∩Ak| = (ρi,j)(n− 2)!∑
i,j

|Ai ∩Aj | =
∑
i,j

(ρi,j)(n− 2)! = (n− 2)!
∑
i,j

ρi,j = r2(n− 2)!

where r2 = number of ways to place 2 nonattacking rooks on an
n × n chessboard so that each of the 2 rooks is in a forbidden
position.
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Similarly, define rk = number of ways to place k nonattacking
rooks on an n× n chessboard so that each of the k rooks is in a
forbidden position.

Then Σ|Ai1 ∩Ai2 ∩ ... ∩Aik | = rk(n− k)!. �

Note that if there are many forbidden positions, then rk may be
difficult to calculate and it may be easier to calculate p(X1, X2, ..., Xn)
directly. If there are few forbidden positions, Thm 6.4.1 is the
easier method to compute p(X1, X2, ..., Xn).

Example: Let X = {1, 2, 3}. Let i1i2i3 ∈ P ({1, 2}, {1, 3}, {3}).
Then there is only one choice for both i1 and i2, namely i1 = 3
and i2 = 2. But this leaves only one choice for i3 = 1.

Thus p({1, 2}, {1, 3}, {3}) = 1.

Note in this case, it was easiest to
count directly and not use Thm 6.4.1.

Example: Let X = {1, 2, 3, 4, 5, 6, 7}.

Calculate p({1, 2}, {1, 3}, {3}, {5}, {4}, ∅, ∅)

r1 = the number of forbidden positions = 7.
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To calculate ri for i > 1, note that the forbidden positions can
be partitioned into two independent sets. Let F1 = the forbidden
positions in the upper left 3× 3 corner. Let F2 contain the other
two forbidden positions in a 2 × 2 square. These positions are
independent because a rook in F1 cannot
attack a rook in F2 (and vice versa).

To calculate r2 we break the problem
into the following cases:

Case 1: both rooks are in F1.

Subcase 1: one rook is placed in the 3rd column. There is only 1
possible placement for a rook in the 3rd column (1st row). There
are 3 possible placements for the second rook so that the two
rooks are in F1 in non-attacking position.

Subcase 2: both rooks are place in the
first two columns. In this case, the placement
possibilities correspond to 13, 21, 23.
Thus there are 3 possibilities in this subcase.

Thus there are 3 + 3 = 6 possible non-attacking rook placements
when both rooks are in F1.

Case 2: both rooks are in F2.

Since there are only 2 rooks in F2, there
is only one way to place both rooks in F2.
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Case 3: one rook is in F1 while the
other rook is in F2.

There are (5)(2) = 10 ways to place
one rook in F1 and one rook in F2.

Thus r2 = 6 + 1 + 10 = 17.

To calculate r3 we break the problem
into the following cases:

Case 1: all 3 rooks are in F1:

There is only 1 possible placement for a
rook in the 3rd column (1st row). Thus in
the second column, the rook must be placed in the first row.
Thus in the first column, the remaining rook must be placed in
the second row

Thus the only valid placement corresponds to the permutation
213

Case 2: 2 rooks in F1, 1 rook in F2.

By above, there are 6 ways to place 2 rooks in F1 and 2 ways to
place 1 rook in F2. Thus there are (6)(2) = 12 ways to place 2
rooks in F1, 1 rook in F2.

Case 3: 1 rook in F1, 2 rooks in F2.

By above, there are 5 ways to place 1 rook in F1 and 1 way to
place 2 rook in F2. Thus there are (5)(1) = 5 ways to place 1
rooks in F1, 2 rook in F2.

Hence r3 = 1 + 12 + 5 = 18
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To calculate r4 we break the problem into the following cases:

Case 1: 3 rooks in F1, 1 rook in F2:

By above, there is 1 way to place 3 rooks in F1 and 2 ways to
place 1 rook in F2. Thus there are (1)(2) = 2 ways to place 3
rooks in F1, 1 rook in F2.

Case 2: 2 rooks in F1, 2 rook in F2.

By above, there are 6 ways to place 2 rooks in F1 and 1 way to
place 1 rook in F2. Thus there are (6)(1) = 6 ways to place 2
rooks in F1, 2 rook in F2.

Hence r4 = 2 + 6 = 8

To calculate r5 we note that if we have 5 nonattacking rooks
in forbidden positions, 3 rooks are in F1 and 2 rook in F2. By
above, there is 1 way to place 3 rooks in F1 and 1 way to place
2 rook in F2. Thus there are (1)(1) = 1 way to place 3 rooks in
F1, 2 rook in F2. Thus r5 = 1.

Note r6 = r7 = 0 as we can’t place more than 5 nonattacking
rooks in forbidden positions if we only have 5 columns which
contain forbidden positions.

Hence p({1, 2}, {1, 3}, {3}, {5}, {4}, ∅, ∅)

= n!− r1(n− 1)! + r2(n− 2)!− ...+ (−1)nrn

= 7!− r1(6!) + r2(5!)− r3(4!) + r4(3!)− r5(2!)

= 7!− 7(6!) + 17(5!)− 18(4!) + 8(3!)− (2!).
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