\magnification 1900 \parindent 0pt \parskip 10pt \pageno=1 \hsize 7.2truein \hoffset -0.35truein \voffset -0.3truein \vsize 10truein \def\u{\vskip -10pt} \def\v{\vfill} \def\s{\vskip -5pt} \def\r{\vskip -4pt} \def\Z{\cal Z} \def\hb{\hfil \break} \def\hr{\vskip 5pt \hrule } \def\S5{\Sigma_{n=1}^5} \underbar{6.2: Combinations with repetitions.} The number of integral solutions to $\S5 x_i = 20$ \rightline{where $-2 \leq x_i \leq 7$ $\forall i$} = The number of integral solutions to $\S5 y_i = 30$ \rightline{where $0 \leq y_i \leq 9$ $\forall i$} Pf: Let $y_i = x_i + 2$ \hr The number of 30-combinations of the \rightline{multiset $\{ 9 \cdot a_1, 9 \cdot a_1, 9 \cdot a_2, 9 \cdot a_3, 9 \cdot a_4, 9 \cdot a_5\} =$} \v \eject Let $S = $ the set of integral solutions to $y_1 + y_2 + y_3 + y_4 + y_5 = 30$ {where $0 \leq y_i $ $\forall i$} \vskip 20pt Then $|S| = $ the number of permutations of $\{30 \cdot 1, 4 \cdot +\}$ = \vskip 20pt For $i = 1, 2, 3, 4, 5$, \hb let $A_i =$ the set of integral solutions to $y_1 + y_2 + y_3 + y_4 + y_5 = 30$ \rightline{where $10 \leq y_i $ } Ex: $(10, 5, 5, 5, 5) \in A_1$, $(0, 20, 7, 2, 1) \in A_2$, \rightline{$(0, 0, 10, 10, 10) \in A_3 \cap A_4 \cap A_5$} Then $\overline{\cup_{i=1}^5 A_i} = $ the set of of integral solutions to $\S5 y_i = 30$ \rightline{where $0 \leq y_i \leq 9$ $\forall i$} \end 6.3: Suppose each person in a group of $n$ friends brings a gift to a party. In how many ways can the $n$ gifts be distributed so that no person receives their own gift. Let the set of friends = $\{p_1, ..., p_n\}$ where $p_i = $ person $i$. Let the set of gifts = $\{g_1, ..., g_n\}$ where $g_j$ = the gift brought by person $i$. Suppose $F: \{p_1, ..., p_n\} \rightarrow \{g_1, ..., g_n\}$, $F(p_i) = g_j$ iff person $p_i$ receives give $g_j$, the gift brought by person $i$. If no person receives their own gift. Then $F(p_i) \not= g_i$. In simpler notation: $F: \{1, ..., n\} \rightarrow \{1, ..., n\}$, such that $F(i) \not = i$ \end