New Office Hours: M 11:45am - 1:15pm, T 4:45pm - 5+, WF 9:40-10:10am, Th 2:30-3:15pm, and by appointment.

Thm 2.1.1. Pigeonhole Principle (weak form): If you have $n+1$ pigeons in n pigeonholes, then at least one pigeonhole with be occupied by 2 or more pigeons.

Thm 2.1.1 If $f: A \rightarrow B$ is a function and $|A|=n+1$, and $|B|=n$, then f is not $1: 1$.
Cor: If $f: A \rightarrow B$ is a function and A is finite and $|A|>|B|$, then f is not 1:1.

Note that the domain must have more elements then the codomain to guarantee that f is not $1: 1$ as the following example illustrates:

$$
i d:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}, i d(k)=k \text { is } 1: 1
$$

Recall that the converse of $[p$ implies $q]$ is $[q$ implies $p]$.
Note the converse of a theorem is frequently false as the following example illustrates:

$$
c:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}, i d(k)=1 \text { is not } 1: 1
$$

but domain does not have more elements than the codomain.
$f: A \rightarrow B$ a function which is not $1: 1$ does not imply $|A|>|B|$.
The contrapositive of $[p$ implies q] is [not q implies not $p]$. The contrapositive of a theorem is true:

Cor: If $f: A \rightarrow B$ is a function which is $1: 1$, then $|A| \leq|B|$.
Related theorem:
Thm AB: Thm 2.1.1 If $f: A \rightarrow B$ is a function and if $|A|=n=|B|$, then f is $1: 1$ iff f is onto.

Application 6: Chinese remainder theorem:
Suppose $m, n, a, b \in \mathcal{Z},(m, n)=1,0 \leq a \leq m-1,0 \leq b \leq n-1$, then $\exists x \geq 0$ such that $x=p m+a=q n+b$ for $p, q \in \mathcal{Z}$.

Moreover can take $p \in\{0, \ldots, n-1\}$.

Scratch work:
a is the remainder when x is divided by m.
b is the remainder when x is divided by n.
$x=a \bmod m, \quad x=b \bmod n$.

Proof plus thoughts:
We need to use the Pigeonhole principle (or related theorem). Thus we need to create objects. We are interested in $p m+a$ for some unknown $p \in \mathcal{Z}$. Thus one idea is to create the following objects:
$\mathcal{O}=\{a, m+a, 2 m+a, \ldots,(n-1) m+a\}$.
Note \mathcal{O} has \qquad distinct objects.

We need to create boxes. What else are we interested in? How about remainders?

Let $r_{k}=$ the remainder of $k m+a$ when divided by n.
Properties of r_{k} :

Thm 2.2.1 Pigeonhole Principle (strong form): Let $q_{1}, q_{2}, \ldots, q_{n}$ be positive integers. If $q_{1}+q_{2}+\ldots+q_{n}-n+1$ objects are put into n boxes, then for some i the i th box contains at least q_{i} objects

Proof Outline:

Cor: Pigeonhole Principle (weak form):
Proof. Let $q_{i}=2$ for all i.
Cor: If $n(r-1)+1$ objects are put into n boxes, then there exists a box containing at least r objects.

Proof: Let $q_{i}=r$ for all i. Note $n r-n+1=n(r-1)+1$.
Cor A: If $m_{i} \in \mathcal{Z}_{+}$and if $\frac{m_{1}+\ldots+m_{n}}{n}>r-1$, then there exists an i such that $m_{i} \geq r$.

Cor A: If $m_{i} \in \mathcal{Z}_{+}$and if $\frac{m_{1}+\ldots+m_{n}}{n} \geq r$, then there exists an i such that $m_{i} \geq r$.

Lemma B: If $\frac{m_{1}+\ldots+m_{n}}{n}<r$, then there exists an i s. t. $m_{i}<r$.

Appl: Suppose you have 20 pairs of shoes in your closet. If you grab n shoes at random, what should n be so that you are guaranteed to have a matching pair of shoes.

Appl: Suppose you have 20 pairs of socks. If you grab n socks at random, what should n be so that you are guaranteed to have a matching pair of shoes.

Appl: Suppose you have 20 pairs of socks. If 7 are black and 13 are white, and if you grab n socks at random, what should n be so that you are guaranteed to have a pair of socks of the same color.

Appl 7: If you have an arbitrary number of apples, bananas and oranges, what is the smallest number of these fruits that one needs to put in a basket in order to guarantee there are at least 8 apples or at least 6 bananas or at least 9 oranges in the basket.

