
G(p,N) = {[g] | gsmooth : U → N , for some Uopen such that p ∈ U ⊂M}

G(p) = G(p,R)

C∞(M) = {g | gsmooth : M → R}

C∞(p) = {g | gsmooth : U → N , for some Uopen such that p ∈ U ⊂M}

D is a derivation iff D : C∞(p) → R and D is linear and satisfies the Leibniz rule.

That is D is a derivation if D(f) ∈ R,
D(cf) = cD(f), D(f + g) = D(f) +D(g),
D(fg) = f(p)Dg + g(p)Df

Let α : I →M where I = an interval ⊂ R, α(0) = p. Note [α] ∈ G[0,M ]

Directional derivative of [g] in direction [α] =

Dαg =
d(g ◦ α)

dt
|t=0 ∈ R

Dα : G(p) → R is a derivation.

Tp(M) = {v : G(p) → R | v is linear and satisfies the Leibniz rule }

v ∈ Tp(M) is called a derivation

Given a chart (U,φ) at p where φ(p) = 0,

the standard basis for Tp(M) = {( ∂
∂x1

)p, ..., (
∂

∂xm
)p}, where ( ∂

∂xi
)p = Dαi

and for some ǫ > 0, αi : (−ǫ, ǫ) →M , αi(t) = φ−1(0, ..., t, ..., 0)

If v ∈ Tp(M), then v = Σmi=1ai(
∂
∂x1

)p where ai = v([πi ◦ φ])

1



TM = ∪p∈MTp(M) = {(p, v) | p ∈M,v ∈ TpM},

let π: TM →M be defined by π(p, v) = p.

Let (φ,U) be a chart for M .

If q ∈ U , let {( ∂
∂x1

)q, ..., (
∂

∂xm
)q} be the standard basis (w.r.t (φ,U)) for Tq(M) = Tq

tφ: π
−1(U) → φ(U) ×R

m ⊂ R
2m,

tφ(q, v) = (φ(q), a1, ..., am) where v = Σmi=1ai(
∂
∂xi

)q

Let A be a maximal atlas for M .

Basis for topology on TM :
{W | ∃(φ,U) ∈ A s.t. W ⊂ π−1(U) and tφ(W ) open in R

2m}

Claim: TM is a 2m−manifold and
C = {(tφ, π

−1(U)) | (φ,U) ∈ A} is a pre-atlas for TM .

π: TM →M , π(p, v) = p is smooth

df : TM → TN defined by df(p, v) = (f(p), dpf(v)) is smooth if f : M → N is
smooth.

Proof: See Hitchin 4.1 (in Chapter 1 of
http://www2.maths.ox.ac.uk/ hitchin/hitchinnotes/hitchinnotes.html
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Defn: A vector field or section of the tangent bundle TM is a smooth function
s: M → TM so that π ◦ s = id [i.e., s(p) = (p, vp)].

Ex: If M = R, let s(p) = (p, ( d
dx

)p)

Sometimes we will drop the p and write s(p) = ( d
dx

)p

Let f ∈ C∞(R). For all p ∈ R, s(p)(f) = ( df
dx

)p = df
dx

(p)

Define sf : R → R, sf (p) = df
dx

(p). I.e., sf = df
dx

Note sf is smooth.

We can think of a vector field as a function
S : C∞(M) → C∞(M), S(f) = sf

Ex: S : C∞(R) → C∞(R), S(f) = df
dx

. I.e., S = d
dx

Ex: If M = R, then s(p) = a(p)( d
dx

)p where a : R → R is a smooth function.

Let f ∈ C∞(R).
For all p ∈ R, s(p)(f) = a(p)( df

dx
)p = a(p) df

dx
(p)

Define sf : R → R, sf (p) = a(p) df
dx

(p). I.e., sf = a df
dx

Note sf is smooth.

We can think of a vector field as a function
S : C∞(M) → C∞(M), S(f) = sf

Ex: S : C∞(R) → C∞(R), S(f) = a df
dx

I.e., S = a d
dx
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In the above we used the charts φp : R → R, φp(x) = x− p.

Thus
d(g(φ−1

p (x)))

dx
|x=0 = d(g(x+p))

dx
|x=0 = dg

dx
(p)

Note φ0(x) = φp(x+ p).

Thus
d(φp(φ−1

0
(x))

dx
|x=0 =

d(φp(φ−1
p (x+p)))

dx
|x=0 = d(x+p)

dx
|x=0 = 1

If we use the chart ψq : R → R, ψq(x) = q − x.

Then
d(g(ψ−1

p (x)))

dx
|x=0 = d(g(p−x))

dx
|x=0 = −dg

dx
(p)

Note
d(ψq(x+p))

dx
|x=0 =

dψq

dx
|p = d(q−x)

dx
|p = −1

Example of a non-smooth vector field on R:

If p ≥ 0, let s(p) = (p, ( d
dx

)p)
[i.e., the basis element of Tp(R) from φp]

If p < 0, let s(p) = (p, (− d
dx

)p)
[i.e., the basis element of Tp(R) from ψp]

Ex: If M = R
2, then s(ψ) = a(ψ)( ∂

∂x
)ψ + b(ψ)( ∂

∂y
)ψ where a, b : R

2 → R are
smooth functions.

Ex: Let {( ∂
∂x1

)p, ..., (
∂

∂xm
)p} be a basis for Tp(M).

Let s : M → TM , s(p) = (p,Σmi=1ai(p)(
∂
∂xi

)p)

Defn: s is never zero if s(p) 6= (p,0) for all p ∈M .

Prop: Let G be a Lie group. Then G admits a never-zero vector field.

Note: Sn admits a never-zero vector field iff n odd.
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Let p2(s(p)) = p2(p, vp) = vp

Defn: The vector fields s1, ..., sk are linearly independent iff for all p ∈M ,
p2(s1(p)), ..., p2(sk(p)) are linearly independent.

Defn: M is parallelizable (or equivalently the “tangent bundle π: TM → M is
trivial”) iff TM admits m linearly independent vector fields.

Suppose M is parallelizable. Thus for each p ∈M , let {v1,p, ..., vm,p} be ANY basis
for Tp(M) such that si : M → TM , si(p) = (p, vi,p) is a SMOOTH vector field.

NOTE: We can form m vector fields using basis elements iff M is parallelizable.

When M is parallelizable, we can define:

t : TM →M × Rm, t(p, v) = (p, a1, ..., am) where v = Σmi=1aivi,p

Let ρ1 : M ×Rm →M , ρ1(p,x) = p.

ρ2 : M × Rm → Rm, ρ1(p,x) = x.

ρ1 ◦ t : TM →M , (ρ1 ◦ t)(p, v) = π(p, v) = p

Recall π−1(p) = Tp(M)

Prop: t|Tp(M) : Tp(M) → {p} ×Rm is a linear isomorphism for all p.

or equivalently,

ρ2 ◦ t|Tp(M) : Tp(M) → Rm is a linear isomorphism for all p.

since ρ2 ◦ t|Tp(M)(Σ
m
i=1aivi,p) = (a1, ..., am)

HENCE: t : TM →M ×Rm is a diffeomorhism.

Note that for all p ∈ M , given a basis {v1,p, ..., vm,p} be a basis for Tp(M), we can
always define a linear isomorphism:

tp : Tp(M) → Rm, T (Σmi=1aivi,p) = (a1, ..., am)

However, t : TM →M×Rm, t(p, v) = (p, tp(v)) may not be smooth (recall example
of non-smooth vector field on p. 4).

In general TM may not be diffeomorphic to M ×Rm.
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Randell 3.4 The bracket of two vector fields.

Defn: A vector field or section of the tangent bundle TM is a smooth function
s: M → TM so that π ◦ s = id [i.e., s(p) = (p, vp)].

I.e, s takes p ∈M to the derivation vp : C∞(M) → R

Let f ∈ C∞(M)

Define sf : M → R, sf (p) = vp([f ]) where s(p) = (p, vp)

Note sf is smooth.

Thus we can think of a vector field as a function
S : C∞(M) → C∞(M), S(f) = sf

Lemma 3.4.2: Let S : C∞(M) → C∞(M) be linear, and suppose S(fg)(p) =
f(p) · S(g)(p) + S(f)(p) · g(p). Then S is a vector field.

Proof: Define s : M → TM , s(p) = (p, Sp) where

Define Sp : C∞(M) → R, Sp(f) = S(f)(p), i.e, the function S(f) evaluated at p.

Claim Sp is a derivation.

Show Sp is linear and satisfies the Leibniz rule.

Claim s is smooth.

Defn: If A,B are vector fields, let AB = A ◦B

Defn: The Lie Bracket of vector fields A and B is [A,B] = AB − BA : C∞(M) →
C∞(M).

Thm: The Lie bracket of vector fields is a vector field.
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Let α : I →M where I = an interval ⊂ R, α(0) = p. Note [α] ∈ G[0,M ]

Directional derivative of [g] in direction [α] = Dαg = d(g◦α)
dt

|t=0 ∈ R

Dα : G(p) → R is a derivation.

Given a chart (U,φ) at p where φ(p) = 0,

the standard basis for Tp(M) = {( ∂
∂x1

)p, ..., (
∂

∂xm
)p}, where ( ∂

∂xi
)p = Dαi

and for some ǫ > 0, αi : (−ǫ, ǫ) →M , αi(t) = φ−1(0, ..., t, ..., 0)

If v ∈ Tp(M), then v = Σmi=1ai(
∂
∂x1

)p where ai = v([πi ◦ φ])

Let (U,φ) be a chart for M such that 0 ∈ φ(U).

Suppose q ∈ U . Choose ǫ > 0 such that B(φ(q), ǫ) ⊂ φ(U) and B(0, ǫ) ⊂ φ(U).

Let τq : B(φ(q), ǫ) → B(0, ǫ), τq(x) = x − φ(q).

the standard basis for Tq(M) with respect to (U,φ) =
the standard basis for Tq(M) with respect to (φ−1(B(0, ǫ)), τq ◦ φ)

Hence the standard basis (w.r.t. (U,φ)) = {( ∂
∂x1

)q, ..., (
∂

∂xm
)q}, where ( ∂

∂xi
)q = Dαi

αi : (−ǫ, ǫ) →M , αi(t) = φ−1(τ−1(0, ..., t, ..., 0))

= φ−1(φ1(q), ..., φi−1(q), φi(q) + t, φi+1(q), ..., φm(q)) where φi = πi ◦ φ.

Suppose f : M → R is smooth. Recall f is smooth iff for all p ∈ M , there exists a
chart (U,φ) such that p ∈ U and f ◦ φ−1 : φ(U) ⊂ R

m → R is smooth.

Claim: ∂f
∂xi

: U → R, ∂f
∂xi

(q) = ( ∂
∂xi

)q(f) is smooth.

NOTE: ∂f
∂xi

: U → R is only defined on U , and is NOT a globally defined function
on M .

We will show that ∂f
∂xi

◦ φ−1 : φ(U) ⊂ R
m → R is smooth. Let q = φ−1(x)

∂f
∂xi

◦ φ−1(x) = ∂f
∂xi

(q) = ( ∂
∂xi

)q(f) = Dαi
(f) = d(f◦αi)

dt
|t=0 =

d((f◦φ−1)(φ1(q),...,φi−1(q),φi(q)+t,φi+1(q),...,φm(q)))
dt

|t=0 = ∂(f◦φ−1)
∂xi

|φ(q) = ∂(f◦φ−1)
∂xi

|x

Thus ∂f
∂xi

◦ φ−1 is smooth since f ◦ φ−1 is smooth.
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