\magnification 2000 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 9.8truein \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} $TM= \cup_{p \in M} T_p(M) = \left\{ \left( p,v\right) \mid p\in M,v\in T_{p}M\right\} $, let $\pi$:$~TM\rightarrow M$ be defined by $\pi(p,v)=p$. Let $(\phi, U)$ be a chart for $M$. If $q \in U$, let $\{ ( {\partial \over \partial x_1} )_q, ..., ( {\partial \over \partial x_m} )_q \}$ be a basis (w.r.t $(\phi, U)$) for $T_q(M) = T_q$ $t_{\phi}$:$~\pi^{-1}(U) \rightarrow \phi(U)\times{\R}^{m} \subset \R^{2m}$, $t_{\phi}(q, v) = (\phi(q), a_1, ..., a_m)$ where $v = \Sm a_i ( {\partial \over \partial x_i} )_q$ Let ${\cal A}$ be a maximal atlas for $M$. Basis for topology on $TM:$ \bh $\{W ~|~ \exists (\phi, U) \in {\cal A}$ s.t. $W \subset \pi^{-1}(U)$ and $ t_\phi(W)$ open in $\R^{2m} \}$ Claim: $TM$ is a $2m-$manifold and \bh ${\cal C} = \{(t_\phi, \pi^{-1}(U)) ~|~ (\phi, U) \in {\cal A}\}$ is a pre-atlas for $TM$. $\pi$:$~TM\rightarrow M$, $\pi(p,v)=p$ is smooth $df: TM \rightarrow TN$ defined by $df(p,v) = (f(p), d_pf(v))$ is smooth if $f: M \rightarrow N$ is smooth. Proof: See Hitchin 4.1 (in Chapter 1 of\bh http://www2.maths.ox.ac.uk/~hitchin/hitchinnotes/hitchinnotes.html \eject Defn: A {\it vector field} or {\it section of the tangent bundle} $TM$ is a smooth function \bh $s{:~}M\rightarrow TM$ so that $\pi\circ s={id}$ [i.e., $s(p) = (p, v_p)]$. Defn: $s$ is {\it never zero} if $s(p) \not = (p, \0)$ for all $p \in M$. Prop: Let $G$ be a Lie group. Then $G$ admits a never-zero vector field. Note: $S^n$ admits a never-zero vector field iff $n$ odd. Let $p_2(s(p)) = p_2(p, v_p) = v_p$ Defn: The vector fields $s_1, ..., s_k$ are {\it linearly independent} iff for all $p \in M$, $p_2(s_1(p)), ..., p_2(s_k(p))$ are linearly independent. Prop: $M$ is parallelizable (or equivalently the \emph{``tangent bundle }$\pi$% \emph{:~}$TM\rightarrow M$\emph{ is trivial''}) iff $TM$ admits $m$ linearly independent vector fields. Defn: A {\it flow} on $M$ is a smooth action of the Lie group ${\R}^{1}$ on $M$, $\sigma$:~${\R}% ^{1}\times M\rightarrow M$. A flow is also called a {\it dynamical system}. \vskip 10pt \line{A {\it flow line} is the smooth path $\alpha_p: \R \rightarrow M$, $\alpha_p(t) = \sigma(t, p)$.} \end $G(p) = \{[g] ~|~ g^{smooth}: U \rightarrow \R$, for some $U^{open}$ such that $p \in U \subset M \}$ $C^{\infty}(M) = \{g ~|~ g^{smooth}: M \rightarrow \R \}$ $Z_a = \{g ~|~ g^{smooth}: M \rightarrow \R, Dg_a = 0 \}$ The cotangent space $T^*_a = C^{\infty}(M)/ Z_a$. $T^*_a$ is an $m-$dimensional vector space: $(df)_a