\magnification 1400 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.4truein \vsize 10truein \def\emph{} %%\def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\S{\sum_{i=1}^n} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{{\bf p}} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} \def\grad{ \nabla } \def\tens{ \otimes } \def\l{\vskip 5pt \hrule \vskip -5pt} $B$ is bilinear if \bh $B(cv_1 + dv_2, w) = cB(v_1, w) + dB(v_2, w) $ \bh $B(v, cw_1 + dw_2) = cB(v, w_1) + dB(v, w_2)$ Thus $B( (v_1, w_1) + (v_2, w_2)) = B(v_1 + v_2, w_1 + w_2)\bh = B(v_1, w_1 + w_2) + B(v_2, w_1 + w_2) \bh = B(v_1, w_1) + B(v_1, w_2) + B(v_2, w_1) + B(v_2, w_2) $ \l $B$ is linear if \bh $B( (v_1, w_1) + (v_2, w_2)) = B( (v_1, w_1)) + B((v_2, w_2))$ \bh $B( c(v_1, w_1)) = cB( (v_1, w_1) $ \l \l Let $( V \times W )^b = \{B: V \times W \rightarrow \R ~|~ B$ bilinear $\}$ $V \tens W = [( V \times W )^b ]^* = \{h: ( V \times W )^b \rightarrow \R ~|~ h$ linear $\}$ If $v \in V, w \in W$, let $v \tens w: ( V \times W )^b \rightarrow \R, ~ (v \tens w)(B) = B(v,w)$ Prop: $v \tens w \in V \tens W$. Proof: $(v \tens w)(c_1B_1 + c_2B_2) = (c_1B_1 + c_2B_2) (v,w) = c_1B_1(v,w) + c_2B_2(v,w)= c_1(v \tens w)(B_1) + c_2(v \tens w)(B_2) $. Prop: $\S r_i(v_i \tens w_i) \in V \tens W$. Proof: $ (\S r_i(v_i \tens w_i)) (c_1B_1 + c_2B_2) = \S r_i(v_i \tens w_i) (c_1B_1 + c_2B_2) $ \rightline{$= \S c_1r_i(v_i \tens w_i)(B_1) + c_2r_i(v_i \tens w_i)(B_2) $} \rightline{$= c_1(\S r_i( v_i \tens w_i))(B_1) + c_2 ( \S r_i(v_i \tens w_i))(B_2)$.} Note $ (\S r_i(v_i \tens w_i)) (B) = \S r_i(v_i \tens w_i) (B) = \S r_i B(v_i, w_i)$ Prop: The product $\tens$ is bilinear: Proof: $( (c_1 v_1 + c_2v_2) \tens w)(B) = B(c_1 v_1 + c_2v_2, w) = c_1B(v_1, w) + c_2B(v_2, w) $ \bh and ... Claim: $V \tens W = < v \tens w ~|~ v \in V, w \in W, $ \rightline{$(c_1 v_1 + c_2v_2) \tens w = c_1 (v_1 \tens w) + c_2 (v_2 \tens w),$} \rightline{$v \tens (c_1w_1 + c_2w_2) = c_1(v \tens w_1) + c_2(v \tens w_2)>$} $= < v \tens w ~|~ v \in V, w \in W, $ {$( v_1 + v_2) \tens w = v_1 \tens w + v_2 \tens w,$} \rightline{$v \tens (w_1 + w_2) = v \tens w_1 + v \tens w_2, (cv) \tens w = c(v \tens w) = v \tens (cw)>$} \eject Let $v_1,..., v_m$ be a basis for $V$, $w_1,..., w_n$ basis for $W$. If $B$ is a bilinear form, then $B$ is uniquely determined by the $nm$ values $B(v_i,w_j)$. Thus $dim( V \times W )^b = nm = V \tens W $. Hence a basis for $ V \tens W $ is $\{v_i \tens w_j ~|~ i =1,..., m, j = 1, ..., n\}$ Thus $V \tens W = \{ \Sigma c_{ij} v_i \tens w_j ~|~$ {$( v_1 + v_2) \tens w = v_1 \tens w + v_2 \tens w,$} \rightline{$v \tens (w_1 + w_2) = v \tens w_1 + v \tens w_2, (cv) \tens w = c(v \tens w) = v \tens (cw)\}$} \l The universal mapping property: There exists $\phi$, $V \tens W$ such that $\phi: V \times W \rightarrow V \tens W$ is bilinear and given any bilinear map: $B: V \times W \rightarrow U$, there exists a unique linear map $\beta: V \tens W\rightarrow U$ such that $\beta \circ \phi = B$. Moreover $\phi$ and $V \tens W$ are unique in the sense that if $X$ and $\psi$ satisfy the universal mapping property, then there exists an isomorphism $f: V \tens W \rightarrow X$ such that $f \circ \phi = \psi$ \vfill \vfill \vfill \vfill \vfill Let $B: V \times W \rightarrow U$. We will define $\beta: V \tens W \rightarrow (U^*)^* = U$ by defining $\alpha: U^* \rightarrow ( V \times W )^b$ and letting $\beta$ = dual of $\alpha$. Take $f: U \rightarrow \R \in U^*$ Then $f \circ B: V \times W \rightarrow \R$ is bilinear: $(f \circ B)(c_1v_1 + c_2v_2, w) = f(c_1B(v_1, w) + c_2B(v_2, w) ) = c_1(f \circ B)(v_1, w) + c_2(f \circ B)(v_2, w)$ Similarly $(f \circ B)(v, c_1w_1 + c_2w_2) = c_1(f \circ B)(v, w_1) + c_2(f \circ B((v, w_2) $ Thus $f \circ B \in ( V \times W )^b$ $\alpha: U^* \rightarrow ( V \times W )^b$, $\alpha(f) = f \circ B$ Let $\beta: V \tens W \rightarrow (U^*)^*$, $\beta$ = dual of $\alpha$. Recall that if $\alpha: U^* \rightarrow ( V \times W )^b$ is a linear map between vector spaces, \bh the dual map is $\beta: V \tens W \rightarrow (U^*)^*$, $\beta(g) = g \circ \alpha$. Recall $ (U^*)^*$ is naturally isomorphic to $U$ via $d: U \rightarrow (U^*)^*$, $d(v) = h$ where $h: U^* \rightarrow R$, $h(f) = f(v)$. %% Thus $d^{-1}: (U^*)^* \rightarrow U$, $d^{-1}(h) = v$ where if $\beta (\phi(v, w)) = \beta (v \tens w ) = (v \tens w )\circ \alpha$ $ [(v \tens w )\circ \alpha](f) = (v \tens w )(f \circ B) = f(B(v, w))$ Note $d: U \rightarrow (U^*)^*$, $d(B(v, w)) = h$ where $h: U^* \rightarrow R$, $h(f) = f(B(v, w))$. \l $M$ is a $p$-fold multi-linear form on $V$, if $M: V^p \rightarrow \R$, and \bh $ M(v_1, ..., v_{i-1}, c_1v_i + c_2w_i, v_{i+1}, ..., v_p) =$ \rightline{$c_1M(v_1, ..., v_{i-1}, v_i, v_{i+1}, ..., v_p) + c_2M(v_1, ..., v_{i-1}, w_i, v_{i+1}, ..., v_p) $} Recall $( V \times W )^b = \{B: V \times W \rightarrow \R ~|~ B$ bilinear $\}$ \bh $V \tens W = [( V \times W )^b ]^* = \{h: ( V \times W )^b \rightarrow \R ~|~ h$ linear $\}$ Let $( V^n )^{\{m\}} = \{M: V^n \rightarrow \R ~|~ M$ multilinear $\}$ $ (\tens^p V) = [(V^n)^{\{m\}}]^* = \{h: ( V^n )^{\{m\}} \rightarrow \R ~|~ h$ linear $\}$ $M$ is an alternating multilinear form on $V$ if $M$ is multilinear and $M(v_1, ..., v_p) = 0$ if $v_i = v_j$ for some $i \not = j$. \l The tensor algebra = $T(V) = \oplus_{k=0}^\infty (\tens^k V)$ $c_0 + c_1v_i + \Sigma c_{ij} v_i \tens v_j + ... + \Sigma c_{i_1...i_p} v_{i_1} \tens ... \tens v_{i_p}$ $( v_{1} \tens ... \tens v_{p})$$( u_{1} \tens ... \tens u_{q})$ $= v_{1} \tens ... \tens v_{p}\tens u_{1} \tens ... \tens u_{q}$ A subring $I$ of a ring $R$ is an {\it ideal} of $R$ if $ar \in I$ and $ra \in I$ for all $a \in I$, $r \in R$. Let $I(V) =$ ideal generated by $\{v \tens v ~|~ v \in V\}$ The exterior algebra of $V$ is the quotient $\Lambda^*V = T(V) /I(V)$ Let $\pi: T(V) \rightarrow \Lambda^*V$ be the quotient map. The {\it $p$-fold exterior power of $V$} is $\Lambda^pV = \pi (\tens^pV)$ The {\it exterior product} of $\alpha = \pi(a) \in \Lambda^pV$ and $\beta = \pi(b) \in \Lambda^qV$ is $$\alpha \wedge \beta = \pi(a \tens b)$$ \end \l Let $\Lambda$ be an algebra over $\R$ The exterior algebra $\Lambda_n^*$ is the algebra with product $\wedge$ generated by $v_1, ..., v_n$ with unit such that $v_i \wedge v_j = - v_j \wedge v_i$ \end