\magnification 1900 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.4truein \vsize 10truein \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{{\bf p}} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} \def\grad{ \nabla } \def\l{\vskip 5pt \hrule \vskip -5pt} Thm 3.3: Suppose $F$ is a continuous vector field. $F = \grad f$ iff $F$ has path independent line integrals. Moreover if $C$ is a piecewise $C^1$ curve, then $$\int_C F \cdot ds = f(B) -f(A)$$ where $A$ is the initial point of $C$ and $B$ is the terminal point of $C$. \l Thm 3.5. Suppose $F$ is a $C^1$ vector field and suppose $R =$ the domain of $F$ is simply connected in $\R^2$ or $\R^3$.Then $F = \grad f$ for $f \in C^2$ iff $\grad \times F = 0$ for all $x \in R$. \l Suppose $F = (M(x, y), N(x, y))$. Then $\grad \times F = ( {\partial N \over \partial x} - {\partial M \over \partial y} ){\bf k}$ \vfill Ex: $F(x, y) = (x^3, e^y)$ \vfill \eject Parametrized curves: Ex: $f: [0, 2\pi] \rightarrow \R^2$, $f(t) = (cos(t), sin(t))$ Note this is a function of 1 variable. Thus 1 degree of freedom. Hence we obtain 1-dimensional curves. Note $f$ is 1:1 on $(0, 2\pi)$ (but not 1:1 on boundary of $[0, 2\pi]$ \vfill Thus the image of $f$ = $\{(cos(t), sin(t) ) ~|~ t \in \R \}$ is a curve in $\R^2$. A parametrization of the image of $f$ is \centerline{$x(t) = cos(t)$, ~~~$y(t) = sin(t)$.} \vfill This curve can also be represented by the level set, $g^{-1}(1)$ where $g(x, y) = x^2 + y^2$ \vfill The graph of $f$ = $\{(t, f(t)) = (t, cos(t), sin(t) ) ~|~ t \in \R \}$ is also a curve in $\R^3$. A parametrization of the graph of $f$ is \centerline{$x(t) = t,~~~ y(t) = cos(t)$, ~~~$z(t) = sin(t)$.} \vfill \eject 7.1 Parametrized surfaces Ex: $f(s, t) = [0 , 2 \pi] \times \R \rightarrow \R^3$ $f(s, t) = (cos(s), sin(s), t)$ Note this is a function of 2 variables. Thus 2 degrees of freedom. Hence the image is a 2-dimensional surface. Note $f$ is 1:1 on the interior of the domain, but not on the boundary. \vfill \vfill The graph of $f$ is also a 2-dimensional surface (in $\R^5$), but we will focus on the image of $f$. \eject Defn: Suppose $X: D \rightarrow \R^n$, $D \subset \R^2$. Fix $t_0 \in \R$. The {\it s-coordinate curve at $t = t_0$} is the image of the map $c_1(s) = X(s, t_0)$. Fix $s_0 \in \R$. The {\it t-coordinate curve at $s = s_0$} is the image of the map $c_2(t) = X(s_0, t)$. \vfill \eject Suppose $X(s, t)$ differentiable. Let $T_s(s_0, t_0) = {\partial X \over \partial s}(s_0, t_0)$ = tangent vector to the $s$-coordinate \rightline{curve $X(s, t_0)$} Let $T_t(s_0, t_0) = {\partial X \over \partial t}(s_0, t_0)$ = tangent vector to the $t$-coordinate \rightline{curve $X(s_0, t)$} Thus $T_s$ and $T_t$ are tangent to the surface $X(D)$ A normal to this surface is \vfill Defn: A parametrized surface $S = X(D)$ is {\it smooth} at $X(s_0, t_0) $ if $X$ is $C^1$ near $(s_0, t_0)$ and if $N(s_0, t_0) = T_s(s_0, t_0) \times T_t(s_0, t_0) \not= 0$. If $S$ is smooth at every point in $D$, then the surface $S$ is {\it smooth}. If $S$ is a smooth parametrized surface, then $N = T_s \times T_t$ is the {\it standard normal vector arising from the parametrization of $X$}. \eject Let $V$ be a finite-dimensional vector space over $\R$. The dual of $V$ = $V^* = \{f: V \rightarrow \R ~|~ f$ linear $\}$ Note $V^*$ is a vector space. The elements of $V^*$ are called {\it covectors}. If $e_1, ..., e_n$ basis for $V$, then $w_1, ..., w_n$ basis for $V^*$ where $w_i: V \rightarrow \R$ where $w_i(e_j) = \delta_{ij} = \cases{1 & $i = j$ \cr 0 & $i \not= j$}$ dim $V$ = dim $V^*$ Let $F_*: V \rightarrow W$ be a linear map between vector spaces \bh The dual map map is $F^*: W^* \rightarrow V^*$, $F(g) = g \circ F$. $F_*$ is injective implies $F^*$ injective $F_*$ is surjective implies $F^*$ surjective $(G_* \circ F_*)^* = F^* \circ G^*$. $d: V \rightarrow (V^*)^*$, $d(v) = h$ where $h: V^* \rightarrow R$, $h(f) = f(v)$. Thus $ (V^*)^*$ is naturally isomorphic to $V$. \l Defn: The dual of $T_pM= T_p^*M$ is the {\it cotangent space} to $M$ at $p$. If $ {\partial \over \partial x_1}, ..., {\partial \over \partial x_m}$ is a basis for $T_pM$, then the dual basis will be denoted $dx_1, ..., dx_m$. %%Defn: The cotangent bundle of M %%$B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)$ %%$B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2)$ \eject $B$ is bilinear if \bh $B(cv_1 + dv_2, w) = cB(v_1, w) + dB(v_2, w)$ \bh $B(v, cw_1 + dw_2) = cB(v, w_1) + dB(v, w_2)$ Thus $B( (v_1, w_1) + (v_2, w_2)) = B(v_1 + v_2, w_1 + w_2)\bh = B(v_1, w_1 + w_2) + B(v_2, w_1 + w_2) \bh = B(v_1, w_1) + B(v_1, w_2) + B(v_2, w_1) + B(v_2, w_2) $ $B$ is linear if \bh $B( (v_1, w_1) + (v_2, w_2)) = B( (v_1, w_1)) + B((v_2, w_2))$ \bh $B( c(v_1, w_1)) = cB( (v_1, w_1) $ \end