Thm 3.3: Suppose F is a continuous vector field.

 $F = \nabla f$ iff F has path independent line integrals.

Moreover if C is a piecewise C^1 curve, then

$$\int_C F \cdot ds = f(B) - f(A)$$

where A is the initial point of C and B is the terminal point of C.

Thm 3.5. Suppose F is a C^1 vector field and suppose R = the domain of F is simply connected in \mathbb{R}^2 or \mathbb{R}^3 . Then

 $F = \nabla f$ for $f \in C^2$ iff $\nabla \times F = 0$ for all $x \in R$.

Suppose F = (M(x, y), N(x, y)). Then $\nabla \times F = (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})\mathbf{k}$

Ex: $F(x, y) = (x^3, e^y)$

Parametrized curves:

Ex: $f : [0, 2\pi] \to \mathbf{R}^2, f(t) = (\cos(t), \sin(t))$

Note this is a function of 1 variable. Thus 1 degree of freedom. Hence we obtain 1-dimensional curves.

Note f is 1:1 on $(0, 2\pi)$ (but not 1:1 on boundary of $[0, 2\pi]$

Thus the image of $f = \{(cos(t), sin(t)) \mid t \in \mathbf{R}\}$ is a curve in \mathbf{R}^2 .

A parametrization of the image of f is $x(t) = cos(t), \quad y(t) = sin(t).$

This curve can also be represented by the level set, $g^{-1}(1)$ where $g(x, y) = x^2 + y^2$

The graph of $f = \{(t, f(t)) = (t, cos(t), sin(t)) \mid t \in \mathbf{R}\}$ is also a curve in \mathbf{R}^3 .

A parametrization of the graph of f is x(t) = t, y(t) = cos(t), z(t) = sin(t). 7.1 Parametrized surfaces

Ex:
$$f(s,t) = [0,2\pi] \times \mathbf{R} \to \mathbf{R}^3$$

 $f(s,t) = (\cos(s), \sin(s), t)$

Note this is a function of 2 variables. Thus 2 degrees of freedom. Hence the image is a 2-dimensional surface.

Note f is 1:1 on the interior of the domain, but not on the boundary.

The graph of f is also a 2-dimensional surface (in \mathbb{R}^5), but we will focus on the image of f. Defn: Suppose $X: D \to \mathbf{R}^n, D \subset \mathbf{R}^2$.

Fix $t_0 \in \mathbf{R}$. The s-coordinate curve at $t = t_0$ is the image of the map $c_1(s) = X(s, t_0)$.

Fix $s_0 \in \mathbf{R}$. The *t*-coordinate curve at $s = s_0$ is the image of the map $c_2(t) = X(s_0, t)$.

Suppose X(s,t) differentiable.

Let $T_s(s_0, t_0) = \frac{\partial X}{\partial s}(s_0, t_0) = \text{tangent vector to the s-coordinate}$ curve $X(s, t_0)$

Let $T_t(s_0, t_0) = \frac{\partial X}{\partial t}(s_0, t_0) = \text{tangent vector to the } t\text{-coordinate}$ curve $X(s_0, t)$

Thus T_s and T_t are tangent to the surface X(D)

A normal to this surface is

Defn: A parametrized surface S = X(D) is smooth at $X(s_0, t_0)$ if X is C^1 near (s_0, t_0) and if $N(s_0, t_0) = T_s(s_0, t_0) \times T_t(s_0, t_0) \neq 0$.

If S is smooth at every point in D, then the surface S is *smooth*.

If S is a smooth parametrized surface, then $N = T_s \times T_t$ is the standard normal vector arising from the parametrization of X. Let V be a finite-dimensional vector space over \mathbf{R} .

The dual of $V = V^* = \{f : V \to \mathbf{R} \mid f \text{ linear } \}$

Note V^* is a vector space. The elements of V^* are called *covectors*.

If $e_1, ..., e_n$ basis for V, then $w_1, ..., w_n$ basis for V^* where $w_i : V \to \mathbf{R}$ where $w_i(e_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

 $\dim V = \dim V^*$

Let $F_*: V \to W$ be a linear map between vector spaces The dual map map is $F^*: W^* \to V^*$, $F(g) = g \circ F$.

 F_* is injective implies F^* injective

 F_* is surjective implies F^* surjective

$$(G_* \circ F_*)^* = F^* \circ G^*.$$

 $d: V \to (V^*)^*, d(v) = h$ where $h: V^* \to R, h(f) = f(v).$

Thus $(V^*)^*$ is naturally isomorphic to V.

Defn: The dual of $T_p M = T_p^* M$ is the *cotangent space* to M at p.

If $\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_m}$ is a basis for $T_p M$, then the dual basis will be denoted $dx_1, ..., dx_m$.

B is bilinear if $B(cv_1 + dv_2, w) = cB(v_1, w) + dB(v_2, w)$ $B(v, cw_1 + dw_2) = cB(v, w_1) + dB(v, w_2)$

Thus

$$B((v_1, w_1) + (v_2, w_2)) = B(v_1 + v_2, w_1 + w_2)$$

= $B(v_1, w_1 + w_2) + B(v_2, w_1 + w_2)$
= $B(v_1, w_1) + B(v_1, w_2) + B(v_2, w_1) + B(v_2, w_2)$

B is linear if $B((v_1, w_1) + (v_2, w_2)) = B((v_1, w_1)) + B((v_2, w_2))$ $B(c(v_1, w_1)) = cB((v_1, w_1))$