Thm 3.3: Suppose F is a continuous vector field.
$F=\nabla f$ iff F has path independent line integrals.
Moreover if C is a piecewise C^{1} curve, then

$$
\int_{C} F \cdot d s=f(B)-f(A)
$$

where A is the initial point of C and B is the terminal point of C.

Thm 3.5. Suppose F is a C^{1} vector field and suppose $R=$ the domain of F is simply connected in \mathbf{R}^{2} or \mathbf{R}^{3}. Then
$F=\nabla f$ for $f \in C^{2}$ iff $\nabla \times F=0$ for all $x \in R$.
Suppose $F=(M(x, y), N(x, y))$. Then $\nabla \times F=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}$

Ex: $F(x, y)=\left(x^{3}, e^{y}\right)$

Parametrized curves:
Ex: $f:[0,2 \pi] \rightarrow \mathbf{R}^{2}, f(t)=(\cos (t), \sin (t))$
Note this is a function of 1 variable. Thus 1 degree of freedom. Hence we obtain 1-dimensional curves.

Note f is $1: 1$ on $(0,2 \pi)$ (but not $1: 1$ on boundary of $[0,2 \pi]$

Thus the image of $f=\{(\cos (t), \sin (t)) \mid t \in \mathbf{R}\}$ is a curve in \mathbf{R}^{2}.

A parametrization of the image of f is

$$
x(t)=\cos (t), \quad y(t)=\sin (t)
$$

This curve can also be represented by the level set, $g^{-1}(1)$ where $g(x, y)=x^{2}+y^{2}$

The graph of $f=\{(t, f(t))=(t, \cos (t), \sin (t)) \mid t \in \mathbf{R}\}$ is also a curve in \mathbf{R}^{3}.

A parametrization of the graph of f is

$$
x(t)=t, \quad y(t)=\cos (t), \quad z(t)=\sin (t)
$$

7.1 Parametrized surfaces

Ex: $f(s, t)=[0,2 \pi] \times \mathbf{R} \rightarrow \mathbf{R}^{3}$
$f(s, t)=(\cos (s), \sin (s), t)$
Note this is a function of 2 variables. Thus 2 degrees of freedom. Hence the image is a 2 -dimensional surface.

Note f is $1: 1$ on the interior of the domain, but not on the boundary.

The graph of f is also a 2-dimensional surface (in \mathbf{R}^{5}), but we will focus on the image of f.

Defn: Suppose $X: D \rightarrow \mathbf{R}^{n}, D \subset \mathbf{R}^{2}$.
Fix $t_{0} \in \mathbf{R}$. The s-coordinate curve at $t=t_{0}$ is the image of the $\operatorname{map} c_{1}(s)=X\left(s, t_{0}\right)$.

Fix $s_{0} \in \mathbf{R}$. The t-coordinate curve at $s=s_{0}$ is the image of the map $c_{2}(t)=X\left(s_{0}, t\right)$.

Suppose $X(s, t)$ differentiable.
Let $T_{s}\left(s_{0}, t_{0}\right)=\frac{\partial X}{\partial s}\left(s_{0}, t_{0}\right)=$ tangent vector to the s-coordinate curve $X\left(s, t_{0}\right)$

Let $T_{t}\left(s_{0}, t_{0}\right)=\frac{\partial X}{\partial t}\left(s_{0}, t_{0}\right)=$ tangent vector to the t-coordinate curve $X\left(s_{0}, t\right)$

Thus T_{s} and T_{t} are tangent to the surface $X(D)$
A normal to this surface is

Defn: A parametrized surface $S=X(D)$ is smooth at $X\left(s_{0}, t_{0}\right)$ if X is C^{1} near $\left(s_{0}, t_{0}\right)$ and if $N\left(s_{0}, t_{0}\right)=T_{s}\left(s_{0}, t_{0}\right) \times T_{t}\left(s_{0}, t_{0}\right) \neq$ 0.

If S is smooth at every point in D, then the surface S is smooth.

If S is a smooth parametrized surface, then $N=T_{s} \times T_{t}$ is the standard normal vector arising from the parametrization of X.

Let V be a finite-dimensional vector space over \mathbf{R}.
The dual of $V=V^{*}=\{f: V \rightarrow \mathbf{R} \mid f$ linear $\}$
Note V^{*} is a vector space. The elements of V^{*} are called covectors.

If e_{1}, \ldots, e_{n} basis for V, then w_{1}, \ldots, w_{n} basis for V^{*} where $w_{i}: V \rightarrow \mathbf{R}$ where $w_{i}\left(e_{j}\right)=\delta_{i j}= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}$
$\operatorname{dim} V=\operatorname{dim} V^{*}$
Let $F_{*}: V \rightarrow W$ be a linear map between vector spaces The dual map map is $F^{*}: W^{*} \rightarrow V^{*}, F(g)=g \circ F$.
F_{*} is injective implies F^{*} injective
F_{*} is surjective implies F^{*} surjective
$\left(G_{*} \circ F_{*}\right)^{*}=F^{*} \circ G^{*}$.
$d: V \rightarrow\left(V^{*}\right)^{*}, d(v)=h$ where $h: V^{*} \rightarrow R, h(f)=f(v)$.
Thus $\left(V^{*}\right)^{*}$ is naturally isomorphic to V.
Defn: The dual of $T_{p} M=T_{p}^{*} M$ is the cotangent space to M at p.

If $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}}$ is a basis for $T_{p} M$, then the dual basis will be denoted $d x_{1}, \ldots, d x_{m}$.
B is bilinear if
$B\left(c v_{1}+d v_{2}, w\right)=c B\left(v_{1}, w\right)+d B\left(v_{2}, w\right)$
$B\left(v, c w_{1}+d w_{2}\right)=c B\left(v, w_{1}\right)+d B\left(v, w_{2}\right)$

Thus

$$
\begin{aligned}
& B\left(\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)\right)=B\left(v_{1}+v_{2}, w_{1}+w_{2}\right) \\
& =B\left(v_{1}, w_{1}+w_{2}\right)+B\left(v_{2}, w_{1}+w_{2}\right) \\
& =B\left(v_{1}, w_{1}\right)+B\left(v_{1}, w_{2}\right)+B\left(v_{2}, w_{1}\right)+B\left(v_{2}, w_{2}\right)
\end{aligned}
$$

B is linear if
$B\left(\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)\right)=B\left(\left(v_{1}, w_{1}\right)\right)+B\left(\left(v_{2}, w_{2}\right)\right)$
$B\left(c\left(v_{1}, w_{1}\right)\right)=c B\left(\left(v_{1}, w_{1}\right)\right.$

