Randell 2.1
Let $p \in M$.
Suppose $g_{i}: U_{i} \rightarrow N$, where $p \subset U_{i}^{\text {open }} \subset M$.
$g_{1} \sim g_{2}$ if $\exists V$ such that $p \in V \subset U_{1} \cap U_{2}$ and $g_{1}(x)=g_{2}(x)$ $\forall x \in V$.

The equivalence class $[\mathrm{g}]$ is a germ.
$G(p, N)=\left\{[g] \mid g^{\text {smooth }}: U \rightarrow N\right.$, for some $U^{\text {open }}$ such that $p \in U \subset M\}$
$G(p)=G(p, \mathbf{R})$
$G(p)$ is an algebra over \mathbf{R}.
Let $\alpha: I \rightarrow M$ where $I=$ an interval $\subset \mathbf{R}, \alpha(0)=p$.
Note $[\alpha] \in G[0, M]$
Directional derivative of $[g]$ in direction $[\alpha]=$

$$
D_{\alpha} g=\left.\frac{d(g \circ \alpha)}{d t}\right|_{t=0} \in \mathbf{R}
$$

Note $D_{\alpha}: G(p) \rightarrow \mathbf{R}$ is linear and satisfies the Leibniz rule.

Boothby 2.4
$T_{\mathbf{a}}\left(\mathbf{R}^{n}\right)=\left\{(\mathbf{a}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{R}^{n}\right\}, \phi(\mathbf{a x})=\mathbf{x}-\mathbf{a}$
canonical basis $\left\{E_{i \mathbf{a}}=\phi^{-1}\left(e_{i}\right) \mid i=1, \ldots, n\right\}$
Let $\mathbf{a} \in R^{n}$
Suppose $f: X \subset \mathbf{R}^{n} \rightarrow \mathbf{R}$ where $\mathbf{a} \subset X^{\text {open }} \subset M$.
$f \sim g$ if $\exists U^{\text {open }}$ s.t. $\mathbf{a} \in U$ and $f(x)=g(x) \forall x \in U$.
Let $C^{\infty}(a)=\left\{f: X \subset \mathbf{R}^{n} \rightarrow \mathbf{R} \in C^{\infty} \mid a \in \operatorname{dom} f\right\}$
$f_{i}: U_{i} \rightarrow \mathbf{R} \in C^{\infty}(a)$ implies $f_{1}+f_{2}: U_{1} \cap U_{2} \rightarrow \mathbf{R} \in$ $C^{\infty}(a), \alpha f_{i}: U_{i} \rightarrow \mathbf{R} \in C^{\infty}(a)$, and $f_{1} f_{2}: U_{1} \cap U_{2} \rightarrow \mathbf{R} \in$ $C^{\infty}(a)$,

Thus $C^{\infty}(a)$ is an algebra over \mathbf{R}
Let $X_{\mathbf{a}}=\sum_{i=1}^{n} \xi_{i} E_{i \mathbf{a}}$
$X_{\mathbf{a}}^{*}: C^{\infty}(\mathbf{a}) \rightarrow \mathbf{R}$
$X_{\mathbf{a}}^{*}(f)=\left.\sum_{i=1}^{n} \xi_{i} \frac{\partial f}{\partial x_{i}}\right|_{\mathbf{a}}=$ directional derivative of f at \mathbf{a} in the direction of $X_{\mathbf{a}}$.

Let $x_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}, x_{j}(\mathbf{x})=x_{j} \quad X_{\mathbf{a}}^{*}\left(x_{j}\right)=\left.\sum_{i=1}^{n} \xi_{i} \frac{\partial x_{j}}{\partial x_{i}}\right|_{\mathbf{a}}=\xi_{i}$
$X_{\mathbf{a}}^{*}$ is linear and satisfies the Leibniz rule.

Let $T_{p}(M)=\{v: G(p) \rightarrow \mathbf{R} \mid v$ is linear and satisfies the Leibniz rule \}

If $v \in T_{p}(M)$ is called a derivation
$D_{\alpha} \in T_{p}(M)$
$T_{p}(M)$ is closed under addition and scalar multiplication and hence is a vector space over \mathbf{R}

Find a basis for $T_{p}(M)$:
Let (U, ϕ) be a chart at p such that $\phi: U^{\text {open }} \rightarrow \phi(U)^{\text {open }}$
R^{m} is a homeomorphism, $\phi(p)=\mathbf{0} \in R^{m}$
$\mathbf{0} \in \phi(U)^{\text {open }}$ implies $\exists \epsilon>0$ such that $B_{\epsilon}(\mathbf{0}) \subset \phi(U)$
Thus if $t \in(-\epsilon, \epsilon)$, then $(0, \ldots, t, \ldots, 0) \subset \phi(U)$.
Define $\alpha_{i}:(-\epsilon, \epsilon) \rightarrow M, \alpha_{i}(t)=\phi^{-1}(0, \ldots, t, \ldots, 0)$
Let $v_{i}=D_{\alpha_{i}}$.
Claim: $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis for $T_{p}(M)$.

Let $\mathcal{D}(a)=\left\{D: C^{\infty}(\mathbf{a}) \rightarrow \mathbf{R} \mid D\right.$ is linear and satisfies the Leibniz rule $\}$
$D \in \mathcal{D}(a)$ is called a derivation
$X_{\mathbf{a}}^{*} \in \mathcal{D}(a)$
$\mathcal{D}(a)$ is closed under addition and scalar multiplication and hence is a vector space over \mathbf{R}

Let $j: T_{\mathbf{a}}\left(\mathbf{R}^{n}\right) \rightarrow \mathcal{D}(a), j\left(X_{\mathbf{a}}\right)=X_{\mathbf{a}}^{*}$
Claim: j is an isomorphism.
Let $X_{\mathbf{a}}=\sum_{i=1}^{n} \xi_{i} E_{i \mathbf{a}}$ and $Z_{\mathbf{a}}=\sum_{i=1}^{n} \zeta_{i} E_{i \mathbf{a}}$
j is a homomorphism.
j is $1-1$:
If $j\left(X_{\mathbf{a}}\right)=j\left(Z_{\mathbf{a}}\right)$, then $X_{\mathbf{a}}^{*}\left(x_{j}\right)=\left.\Sigma_{i=1}^{n} \xi_{i} \frac{\partial x_{j}}{\partial x_{i}}\right|_{\mathbf{a}}=\xi_{i}=\zeta_{i}=$ $Z_{\mathbf{a}}^{*}\left(x_{j}\right)$
j is onto: Let D be a derivation.
Suppose $f(\mathbf{x})=1$. Then $D f=0$ by product rule.
Suppose $g(\mathbf{x})=c$. Then $D g=D(c f)=c D f=0$
Let $h_{i}(\mathbf{x})=x_{i}$. Let $\xi_{i}=D h_{i}$. Then $D=X_{\mathbf{a}}^{*}$ where $X_{\mathbf{a}}=\sum_{i=1}^{n} \xi_{i} E_{i \mathbf{a}}$ (proof: long calculation, see Boothby).

Note since $X_{\mathbf{a}}^{*}(f)=\left.\sum_{i=1}^{n} \xi_{i} \frac{\partial f}{\partial x_{i}}\right|_{\mathbf{a}}, j\left(E_{i \mathbf{a}}\right)=E_{i \mathbf{a}} *=\left.\frac{\partial}{\partial x_{i}}\right|_{\mathbf{a}}$,

