Randell 2.1

Let $p \in M$.

Suppose $g_i: U_i \to N$, where $p \subset U_i^{open} \subset M$.

 $g_1 \sim g_2$ if $\exists V$ such that $p \in V \subset U_1 \cap U_2$ and $g_1(x) = g_2(x)$ $\forall x \in V$.

The equivalence class [g] is a *germ*.

 $G(p, N) = \{[g] \mid g^{smooth} : U \to N, \text{ for some } U^{open} \text{ such that } p \in U \subset M\}$

 $G(p) = G(p, \mathbf{R})$

G(p) is an algebra over **R**.

Let $\alpha: I \to M$ where I = an interval $\subset \mathbf{R}$, $\alpha(0) = p$.

Note $[\alpha] \in G[0, M]$

Directional derivative of [g] in direction $[\alpha] =$

$$D_{\alpha}g = \frac{d(g \circ \alpha)}{dt}|_{t=0} \in \mathbf{R}$$

Note $D_{\alpha} : G(p) \to \mathbf{R}$ is linear and satisfies the Leibniz rule.

Boothby 2.4

 $T_{\mathbf{a}}(\mathbf{R}^n) = \{(\mathbf{a}, \mathbf{x}) \mid \mathbf{x} \in \mathbf{R}^n\}, \ \phi(\mathbf{a}\mathbf{x}) = \mathbf{x} - \mathbf{a}$

canonical basis $\{E_{i\mathbf{a}} = \phi^{-1}(e_i) \mid i = 1, ..., n\}$

Let $\mathbf{a} \in \mathbb{R}^n$

Suppose $f: X \subset \mathbf{R}^n \to \mathbf{R}$ where $\mathbf{a} \subset X^{open} \subset M$.

 $f \sim g$ if $\exists U^{open}$ s.t. $\mathbf{a} \in U$ and $f(x) = g(x) \forall x \in U$.

Let $C^{\infty}(a) = \{ f : X \subset \mathbf{R}^n \to \mathbf{R} \in C^{\infty} \mid a \in domf \}$

 $f_i: U_i \to \mathbf{R} \in C^{\infty}(a) \text{ implies } f_1 + f_2: U_1 \cap U_2 \to \mathbf{R} \in C^{\infty}(a), \, \alpha f_i: U_i \to \mathbf{R} \in C^{\infty}(a), \text{ and } f_1 f_2: U_1 \cap U_2 \to \mathbf{R} \in C^{\infty}(a),$

Thus $C^{\infty}(a)$ is an algebra over **R**

Let $X_{\mathbf{a}} = \sum_{i=1}^{n} \xi_i E_{i\mathbf{a}}$ $X_{\mathbf{a}}^* : C^{\infty}(\mathbf{a}) \to \mathbf{R}$

 $X_{\mathbf{a}}^*(f) = \sum_{i=1}^n \xi_i \frac{\partial f}{\partial x_i}|_{\mathbf{a}}$ = directional derivative of f at \mathbf{a} in the direction of $X_{\mathbf{a}}$.

Let $x_j : \mathbf{R}^n \to \mathbf{R}, x_j(\mathbf{x}) = x_j$ $X^*_{\mathbf{a}}(x_j) = \sum_{i=1}^n \xi_i \frac{\partial x_j}{\partial x_i}|_{\mathbf{a}} = \xi_i$

 $X_{\mathbf{a}}^*$ is linear and satisfies the Leibniz rule.

Let $T_p(M) = \{ v : G(p) \to \mathbf{R} \mid v \text{ is linear and satisfies the Leibniz rule } \}$

If $v \in T_p(M)$ is called a *derivation*

 $D_{\alpha} \in T_p(M)$

 $T_p(M)$ is closed under addition and scalar multiplication and hence is a vector space over **R**

Find a basis for $T_p(M)$:

Let (U, ϕ) be a chart at p such that $\phi : U^{open} \to \phi(U)^{open} \subset \mathbb{R}^m$ is a homeomorphism, $\phi(p) = \mathbf{0} \in \mathbb{R}^m$

 $\mathbf{0} \in \phi(U)^{open}$ implies $\exists \epsilon > 0$ such that $B_{\epsilon}(\mathbf{0}) \subset \phi(U)$

Thus if $t \in (-\epsilon, \epsilon)$, then $(0, ..., t, ..., 0) \subset \phi(U)$.

Define $\alpha_i : (-\epsilon, \epsilon) \to M, \ \alpha_i(t) = \phi^{-1}(0, ..., t, ..., 0)$

 \sim

Let $v_i = D_{\alpha_i}$.

Claim: $\{v_1, ..., v_m\}$ is a basis for $T_p(M)$.

Let $\mathcal{D}(a) = \{D : C^{\infty}(\mathbf{a}) \to \mathbf{R} \mid D \text{ is linear and satisfies the Leibniz rule } \}$

 $D \in \mathcal{D}(a)$ is called a *derivation*

 $X^*_{\mathbf{a}} \in \mathcal{D}(a)$

 $\mathcal{D}(a)$ is closed under addition and scalar multiplication and hence is a vector space over \mathbf{R}

Let $j: T_{\mathbf{a}}(\mathbf{R}^n) \to \mathcal{D}(a), \, j(X_{\mathbf{a}}) = X_{\mathbf{a}}^*$

Claim: j is an isomorphism.

Let $X_{\mathbf{a}} = \sum_{i=1}^{n} \xi_i E_{i\mathbf{a}}$ and $Z_{\mathbf{a}} = \sum_{i=1}^{n} \zeta_i E_{i\mathbf{a}}$

j is a homomorphism.

j is 1-1:

If $j(X_{\mathbf{a}}) = j(Z_{\mathbf{a}})$, then $X_{\mathbf{a}}^*(x_j) = \sum_{i=1}^n \xi_i \frac{\partial x_j}{\partial x_i}|_{\mathbf{a}} = \xi_i = \zeta_i = Z_{\mathbf{a}}^*(x_j)$

j is onto: Let D be a derivation.

Suppose $f(\mathbf{x}) = 1$. Then Df = 0 by product rule. Suppose $g(\mathbf{x}) = c$. Then Dg = D(cf) = cDf = 0

Let $h_i(\mathbf{x}) = x_i$. Let $\xi_i = Dh_i$. Then $D = X_{\mathbf{a}}^*$ where $X_{\mathbf{a}} = \sum_{i=1}^n \xi_i E_{i\mathbf{a}}$ (proof: long calculation, see Boothby).

Note since $X_{\mathbf{a}}^*(f) = \sum_{i=1}^n \xi_i \frac{\partial f}{\partial x_i} |_{\mathbf{a}}, \ j(E_{i\mathbf{a}}) = E_{i\mathbf{a}}^* = \frac{\partial}{\partial x_i} |_{\mathbf{a}},$

.