\magnification 2000 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.5truein \vsize 10truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\c{{\bf c}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\d{{\bf d}} \def\a{{\bf a}} \def\h{{\bf h}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\0{{\bf 0}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -8pt} Randell 2.1 Let $p \in M$. Suppose $g_i: U_i \rightarrow N$, where $p \subset U_i^{open} \subset M$. $g_1 \sim g_2$ if $\exists V$ such that $p \in V \subset U_1 \cap U_2$ and $g_1(x) = g_2(x)$ $\forall x \in V$. The equivalence class [g] is a {\it germ}. $G(p, N) = \{[g] ~|~ g^{smooth}: U \rightarrow N$, for some $U^{open}$ such that $p \in U \subset M \}$ $G(p) = G(p, \R)$ $G(p)$ is an algebra over $\R$. \vskip 5pt \hrule Let $\alpha: I \rightarrow M$ where $I =$ an interval $\subset \R$, $\alpha(0) = p$. Note $[\alpha] \in G[0, M]$ Directional derivative of $[g]$ in direction $[\alpha]$ = $$D_\alpha g = {d(g \circ \alpha) \over dt}|_{t = 0} \in \R$$ Note $D_\alpha: G(p) \rightarrow \R$ is linear and satisfies the Leibniz rule. \vfill \eject Boothby 2.4 $T_\a(\R^n) = \{(\a,\x ) ~|~ \x \in \R^n \}$, $\phi(\a\x) = \x- \a$ canonical basis $\{E_{i\a} = \phi^{-1}(e_i) ~|~ i = 1, ..., n \}$ \vskip 5pt \hrule Let $\a \in R^n$ Suppose $f: X \subset \R^n \rightarrow \R $ where $\a \subset X^{open} \subset M$. $f \sim g$ if $\exists U^{open}$ s.t. $\a \in U$ and $f(x) = g(x) \forall x \in U$. Let $C^\infty(a) = \{ [f]: X \subset \R^n \rightarrow \R \in C^\infty ~|~ a \in dom f \}$ $f_i: U_i \rightarrow \R \in C^\infty(a)$ implies $f_1 + f_2: U_1 \cap U_2 \rightarrow \R \in C^\infty(a)$, $\alpha f_i: U_i \rightarrow \R \in C^\infty(a)$, and $f_1f_2: U_1 \cap U_2 \rightarrow \R \in C^\infty(a)$, Thus $C^\infty(a)$ is an algebra over $\R$ \vskip 5pt \hrule Let $X_\a = \S \xi_i E_{i\a}$ $X_\a^*: C^\infty (\a) \rightarrow \R$ $X_\a^*(f) = \S \xi_i {\partial f \over \partial x_i}|_\a$ = %%$\del f(\a) \cdot X_\a$ directional derivative of $f$ at $\a$ in the direction of $X_\a$. Let $x_j: \R^n \rightarrow \R$, $x_j(\x) = x_j$ \hfill $X_\a^*(x_j) = \S \xi_i {\partial x_j \over \partial x_i}|_\a = \xi_i$ $X_\a^*$ is linear and satisfies the Leibniz rule. \eject Let $T_p(M) = \{v: G(p) \rightarrow \R ~|~ v $ is linear and satisfies the Leibniz rule $ \}$ If $v \in T_p(M)$ is called a {\it derivation} $D_\alpha \in T_p(M)$ $T_p(M)$ is closed under addition and scalar multiplication and hence is a vector space over $\R$ Find a basis for $T_p(M)$: Let $(U, \phi)$ be a chart at $p$ such that $\phi:U^{open} \rightarrow \phi(U)^{open} \subset R^m$ is a homeomorphism, $\phi(p) = \0 \in R^m$ $\0 \in \phi(U)^{open}$ implies $\exists \ep > 0$ such that $B_\ep(\0) \subset \phi(U)$ Thus if $t \in (-\ep, \ep)$, then $(0, ..., t, ..., 0) \subset \phi(U)$. Define $\alpha_i: (-\ep, \ep) \rightarrow M$, $\alpha_i(t) = \phi^{-1}(0, ..., t, ..., 0) $ Let $v_i = D_{\alpha_i}$. Claim: $\{v_1, ..., v_m\}$ is a basis for $T_p(M)$. \eject Let ${\cal D}(a) = \{ D: C^\infty (\a) \rightarrow \R ~|~ D$ is linear and satisfies the Leibniz rule $\}$ $D \in {\cal D}(a)$ is called a {\it derivation} $X_\a^* \in {\cal D}(a)$ %%Define $(\alpha D_1 + \beta D_2)(f) = \alpha [D_1(f)] + \beta [D_2(f)]$ ${\cal D}(a)$ is closed under addition and scalar multiplication and hence is a vector space over $\R$ Let $j: T_\a(\R^n) \rightarrow {\cal D}(a)$, $j(X_\a) = X_\a^*$ Claim: $j$ is an isomorphism. Let $X_\a = \S \xi_i E_{i\a}$ and $Z_\a = \S \zeta_i E_{i\a}$ $j$ is a homomorphism. $j$ is 1-1: \vskip -5pt If $j(X_\a) = j(Z_\a)$, then $X_\a^*(x_j) = \S \xi_i {\partial x_j \over \partial x_i}|_\a = \xi_i = \zeta_i = Z_\a^*(x_j)$ $j$ is onto: Let $D$ be a derivation. \vskip -5pt Suppose $f(\x) = 1$. Then $Df = 0$ by product rule. \hfil \break Suppose $g(\x) = c$. Then $Dg = D(cf) = cDf = 0$ Let $h_i(\x) = x_i$. Let $\xi_i = Dh_i$. Then $D = X_\a^*$ where $X_\a = \S \xi_i E_{i\a}$ (proof: long calculation, see Boothby). \vskip 5pt \hrule Note since $X_\a^*(f) = \S \xi_i {\partial f \over \partial x_i}|_\a$, $j(E_{i\a}) = E_{i\a}* = {\partial \over \partial x_i}|_\a$,$ \end \hrule 2.5 Let $U \subset R^n$ Let $E_{i\p} = \phi^{-1}_\p(\e_i)$ where $\phi_\p: T_\p(\R^n) \rightarrow \R^n$, $\phi_p(\p\x) = \x - \p$ Defn: A {\it vector field} is a function, $f: U \rightarrow T(\R^n)$, such that $f(\p) \in T_\p(\R^n)$ Suppose Defn: A vector field is {\it smooth} if its components relative to the canonical basis are \end