\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\R{{\bf R}} \def\C{{\bf C}} \def\N{{\bf N}} \def\r{{\bf r}} \def\c{{\bf c}} \def\p{{\bf p}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\0{{\bf 0}} \def\a{{\bf a}} \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} Thm: Let $T: V \rightarrow W$ be a linear transformation. Then $T({\bf 0}) = {\bf 0}$ Pf: $T({\bf 0}) = T({\bf 0} + {\bf 0}) = T({\bf 0}) + T({\bf 0})$ \vskip 5pt \hrule Thm: Let $A$ be an $m \times n$ matrix. Then the function $$\matrix{ T:\R^n \rightarrow \R^m \cr T({\bf x}) = A{\bf x}}$$ is a linear transformation. Thm: If $T: \R^n \rightarrow \R^m$ is a linear transformation, then $T({\bf x}) = A{\bf x}$ where $$A = [T({\bf e_1}) ... T({\bf e_n})]$$ Ex: If $T: \R^2 \rightarrow \R^2$ and $T\left( \matrix{1 \cr 0} \right) = \left( \matrix{2 \cr 3} \right)$, $T\left( \matrix{0 \cr 1} \right) = \left( \matrix{1 \cr 4} \right)$, then $$T\left( \matrix{x \cr y} \right) = xT\left( \matrix{1 \cr 0} \right) + yT\left( \matrix{0 \cr 1} \right) = x \left( \matrix{2 \cr 3} \right) + y \left( \matrix{1 \cr 4} \right) = \left( \matrix{2 & 1 \cr 3 & 4} \right) \left(\matrix{x \cr y} \right)$$ Change of basis: Suppose ${\cal S} = \{\left( \matrix{1 \cr 0} \right), \left( \matrix{0 \cr 1} \right) \}$ Suppose ${\cal B} = \{\left( \matrix{2 \cr 3} \right), \left( \matrix{1 \cr 4} \right) \}$ Defn: $\left( \matrix{x \cr y} \right)_{\cal B} = x{\bf b_1} + y {\bf b_2}$ Thus $\left( \matrix{1 \cr 0} \right)_{\cal B} = \left( \matrix{2 \cr 3} \right)_{\cal S}$ and $\left( \matrix{0 \cr 1} \right)_{\cal B} = \left( \matrix{1 \cr 4} \right)_{\cal S}$ $\left( \matrix{x \cr y} \right)_{\cal B} = x\left( \matrix{2 \cr 3} \right)_{\cal S} + y\left( \matrix{1 \cr 4} \right)_{\cal S} = \left( \matrix{2x + y \cr 3x + 4y} \right)_{\cal S}$ $\left( \matrix{2 & 1 \cr 3 & 4} \right) \left(\matrix{x \cr y} \right)_{\cal B} = \left(\matrix{u \cr v}\right)_{\cal S}$ Suppose ${\cal C} = \{\left( \matrix{5 \cr 2} \right), \left( \matrix{2 \cr 1} \right) \}$ $\left( \matrix{5 & 2 \cr 2 & 1} \right) \left(\matrix{w \cr z} \right)_{\cal C} = \left(\matrix{u \cr v}\right)_{\cal S}$ $\left( \matrix{1 & -2 \cr -2 & 5} \right) \left(\matrix{u \cr v} \right)_{\cal S} = \left(\matrix{w \cr z}\right)_{\cal C}$ \vskip 5pt \hrule $\left( \matrix{1 & -2 \cr -2 & 5} \right) \left( \matrix{2 & 1 \cr 3 & 4} \right) \left(\matrix{x \cr y} \right)_{\cal B} = \left( \matrix{1 & -2 \cr -2 & 5} \right) \left(\matrix{u \cr v}\right)_{\cal S} = \left(\matrix{w \cr z}\right)_{\cal C}$ $\left( \matrix{-4 & -7 \cr 11 & 18} \right) \left(\matrix{x \cr y} \right)_{\cal B} =\left(\matrix{w \cr z}\right)_{\cal C}$ Note: \vskip -10pt $\left( \matrix{-4 & -7 \cr 11 & 18} \right) \left(\matrix{1 \cr 0} \right)_{\cal B} =\left(\matrix{-4 \cr 11}\right)_{\cal C}$ and $\left( \matrix{-4 & -7 \cr 11 & 18} \right) \left(\matrix{0 \cr 1} \right)_{\cal B} =\left(\matrix{-7 \cr 18}\right)_{\cal C}$ Take a chart $(U, \phi)$ at $p$ where $\phi(p) = \0$, The {\it standard basis} for $T_p(M)$ w.r.t.$(U, \phi)$ = $\{v_1, ..., v_m\}$, where $v_i = D_{\alpha_i}$ and $\alpha_i: (-\ep, \ep) \rightarrow M$, $\alpha_i(t) = \phi^{-1}(0, ..., t, ..., 0) $ for some $\ep > 0$. If $v \in T_p(M)$, then $v = \Sm a_i v_i$ where $a_i = v([\pi_i \circ \phi])$ Suppose $B x_{\cal B} = x_{\cal S}$ and $C x_{\cal C} = x_{\cal D}$ If $Tx_{\cal B} = y_{\cal C}$, then $TB^{-1}B x_{\cal B} = C^{-1}C y_{\cal C}$ $CTB^{-1} (B x_{\cal B}) = C y_{\cal C}$ $CTB^{-1} x_{\cal S} = y_{\cal D}$ \end