Thm. $f : M \to N$ embedding implies $f(M)$ is a submanifold of N.

Recall K is a submanifold of N if $\forall q \in K \subset N$, $\exists g^{\text{smooth}} : V^{\text{open}} \subset N \to \mathbb{R}^{n-m}$, $q \in V$ such that $K \cap V = g^{-1}(0)$ and rank $d_p g = n - m$.

Proof. Since $f : M \to N$ embedding, $f : M \to N$ is a 1-1 immersion and

$f : M \to f(M)$ is a homeomorphism where $f(M)$ is a subspace of N

Take $q \in f(M)$.

Since f is 1:1, $\exists! p \in M$ such that $f(p) = q$.

$f : M \to N$ an immersion implies f has rank $m \leq n$.

Thus by the rank theorem,
Defn. Suppose \(f : M \to N \) is smooth.

\(p \in M \) is a critical point and \(f(p) \) is a critical value if \(\text{rank } d f_p < n \).

If \(p \in M \) is not a critical point, then it is a regular point.

If \(q \in N \) is not a critical value, then it is a regular value.

Note: \(q \in N \) is a regular value iff \(f^{-1}(q) = \emptyset \) or \(\forall p \in f^{-1}(q), df_p = n \).

Thm 2.3.13: Let \(q \) be a regular value of \(f : M \to N \). Then either \(f^{-1}(q) = \emptyset \) or \(f^{-1}(q) \) is an \((m-n)\)-submanifold of \(M \).

\(\text{Gl}(n, \mathbb{R}) \) is an \(n^2 \) manifold.

\(A \in \text{Gl}(n, \mathbb{R}) \) is orthogonal if \(A^t A = I \).

The orthogonal group = \(O(n) = \{ A \in \text{Gl}(n, \mathbb{R}) \mid A^t A = I \} \)

The special orthogonal group = \(SO(n) = \{ A \in O(n) \mid \text{det}(A) = 1 \} \)

\(O(n), SO(n) \) are subgroups of \(\text{Gl}(n, \mathbb{R}) \).

\(O(n), SO(n) \) are closed in \(\text{Gl}(n, \mathbb{R}) \).

If \(A \in O(n) \), then \(\text{det}(A) = \pm 1 \)

\(SO(n) \) is open in \(0(n) \).

\(s : \text{Gl}(n, \mathbb{R}) \to \text{Gl}(n, \mathbb{R}), s(A) = A^t A \) is smooth.

Let \(S = \) the set of symmetric matrices.

Then \(S = \) is an \(n^2 \) manifold.

\(s : \text{Gl}(n, \mathbb{R}) \to S, s(A) = A^t A \) is smooth.

\(s^{-1}(I) = \)

Claim: \(I \) is a regular value of \(s : \text{Gl}(n, \mathbb{R}) \to S, s(A) = A^t A \).

That is, if \(A \in O(n) \), \(d_A S \) has rank \(\frac{n(n+1)}{2} \).

\(n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2} \).

Thus if \(I \) is a regular value, \(O(n) \) is an \(\frac{n(n-1)}{2} \) submanifold of \(\text{Gl}(n, \mathbb{R}) \).