Suppose \(f : N \to M \). Then \(d_p f : T_p(N) \to T_p(M) \).

If \(df_p \) is \(1 - 1 \), for all \(p \in N \), then \(f \) is called an \textit{immersion}.

I.e., \(f \) is an immersion iff \(f \) has rank \(n \)

If \(df_p \) is onto for all \(p \in N \), then \(f \) is called a \textit{submersion}.

I.e., \(f \) is an submersion iff \(f \) has rank \(m \)

Defn. Suppose \(f : M \to N \) is smooth.

\(p \in M \) is a \textit{critical point} and \(f(p) \) is a \textit{critical value} if rank \(df_p < n \).

If \(p \in M \) is not a critical point, then it is a \textit{regular point}.

If \(q \in N \) is not a \textit{critical value}, then it is a \textit{regular value}.

Note: \(q \in N \) is a regular value iff \(f^{-1}(q) = \emptyset \) or \(\forall p \in f^{-1}(q), \ df_p = n \).

Defn: \(K \) is a \textit{m-submanifold} of \(N \) if \(\forall q \in K \subset N, \exists g^{smooth} : V^{open} \subset N \to \mathbb{R}^{n-m}, \ q \in V \) such that

1.) \(g \) is smooth

2.) \(K \cap V = g^{-1}(0) \) and

3.) rank \(d_p g = n - m \)

Defn: Suppose \(f : M \to N \) is a \(1 - 1 \) immersion, and suppose \(f : M \to f(M) \) is a homeomorphism, where \(f(M) \subset N \) has the relative topology. Then \(f \) is an \textit{embedding}, and \(f(M) \) is an embedded submanifold.

Thm. \(f : M \to N \) embedding implies \(f(M) \) is a submanifold of \(N \).

Thm 2.3.13: Let \(q \) be a regular value of \(f : M \to N \). Then either \(f^{-1}(q) = \emptyset \) or \(f^{-1}(q) \) is an \((m - n) \)-submanifold of \(M \).