\magnification 1400 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.4truein \vsize 10truein \def\emph{} %%\def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\S{\sum_{i=1}^n} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{{\bf p}} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} \def\grad{ \nabla } \def\tens{ \otimes } \def\l{\vskip 5pt \hrule \vskip -5pt} Let $v_1, ..., v_m$ be a basis for $V$. The exterior power of $V =$ $$\Lambda^pV = \{\Sigma a_{i_1}...a_{i_p} v_{i_1} \wedge ... \wedge v_{i_p} ~|~ a_{i_1}...a_{i_p} \in \R , i_1 < ... < i_p\}.$$ I.e., $\Lambda^pV$ is the vector space over $\R$ with basis consisting of the $ \left(\matrix{n \cr p}\right)$ elements $v_{i_1} \wedge ... \wedge v_{i_p}$. Recall $v \wedge v = 0$ implies $v_i \wedge v_j = v_j \wedge v_i$ $\Lambda^*V = \cup_{p = 0}^\infty \Lambda^pV$ is a graded associative algebra with addition + and multiplication $\wedge$. If $v \in \Lambda^pV$ then $v$ has degree $p$ (i.e., it's in the $p$th grade). $\Lambda^0V = \R$ which is generated by 1, the multiplicative identity for this algebra. The wedge product is bilinear: {$(c_1 v_1 + c_2v_2) \wedge w = c_1 (v_1 \wedge w) + c_2 (v_2 \wedge w)$} and \bh $v \wedge (c_1w_1 + c_2w_2) = c_1(v \wedge w_1) + c_2(v \wedge w_2)$ Prop 5.2: $\alpha \in \Lambda^pV$, $\beta \in \Lambda^q V$, then $\alpha \wedge \beta = (-1)^{pq} \beta \wedge \alpha$. Prop 5.6: If $A: V \rightarrow W$ is a linear transformation, then $\Lambda^pA: \Lambda^pV \rightarrow \Lambda^pV$ defined by $\Lambda^pA(v_1 \wedge ... \wedge v_p) = Av_1 \wedge ... \wedge Av_p$ is a linear transformation which is independent of the choice of basis vectors. Prop 5.7: If $dim V = n$, $\Lambda^nA: \Lambda^nV \rightarrow \Lambda^nV$ is given by $\Lambda^nA(c v_1 \wedge ... \wedge v_n) = (det~A)(c v_1 \wedge ... \wedge v_n)$. \l Defn: The dual of $T_pM= T_p^*M$ is the {\it cotangent space} to $M$ at $p$. If $ {\partial \over \partial x_1}, ..., {\partial \over \partial x_m}$ is a basis for $T_pM$, then the dual basis will be denoted $dx_1, ..., dx_m$. $\Lambda^pT_x^*M$ is the p-fold exterior power of the vector space $T_x^*M$ \eject The {\it bundle of p-forms} = $\Lambda^pT^*M = \cup_{x \in M} \Lambda^pT_x^*M$ a manifold of dimension $m + {\left(\matrix{m \cr p}\right)}$ . Let $\pi: \Lambda^pT^*M \rightarrow M$, $\pi(x, v) = x$. If $(U, \phi)$ is a chart for $M$, then the following is a chart for $\Lambda^pT^*M$ $\Phi: \pi^{-1}(U) \rightarrow \phi(U) \times \Lambda^p \R^m \subset \R^m \times \R^{\left(\matrix{m \cr p}\right)}$ $\Phi(x, v) = (\phi(x), y_1, ..., y_{\left(\matrix{m \cr p}\right)})$ where $y_i$ are the coefficients of $v$ in terms of a given basis for $\Lambda^pT_x^*M$ A {\it differential p-form} is a section of $\Lambda^pT^*M$ I.e, a vector field = smooth function $s: M \rightarrow \Lambda^pT^*M$, $s(x) = (x, v_x)$ Ex: 0-form = smooth function. 1-form: $\Sigma a_i(x) dx_i$, locally defined. \l 6.2: Partitions of unity Suppose $f: M \rightarrow \R$. Defn: $supp ~f = \overline{\{\x \in M ~|~ f(x) \not= 0\}}$ Defn: $\{D_\alpha\}_{\alpha \in A}$ is locally finite if $\forall x \in M$, there exists $U$ open such that $U \cap D_\alpha = \emptyset$ for all but finitely many $\alpha$. Defn: A partition of unity on $M$ is a countable collection $\{f_i\}_{i \in I}$ of smooth functions such that 1.) $f_i \geq 0$ \hfill 2.) $\{supp ~f_i ~|~ i \in I\}$ is locally finite \hfill 3.) $\Sigma_i f_i = 1$ Thm 6.1: Given any open covering $\{V_\alpha \}$ of a manifold $M$, there exists a partition of unity $\{f_i\}$ such that $supp ~f_i \subset V_{\alpha_i}$ for some ${\alpha_i}$. Such a partition of unity is said to be {\it subordinate} to the covering $\{V_\alpha \}$. \l Prop: Change of basis: $dy_{i_k} = \Sigma {\partial y_{i_k} \over \partial x_j} dx_j$ \eject 6.4 The exterior derivative. Let $\Omega^p(M)$ = vector space of all $p$-forms on $M$ $d: \Omega^p(M) \rightarrow \Omega^{p+1}(M)$ If $f \in \Omega^0(M)$ (i.e., $f$ is smooth): $df = \S {\partial f \over\partial x_i} dx_i$ = $({\partial f \over\partial x_1} , ..., {\partial f \over\partial x_m} )$ where basis = $\{dx_1, ..., dx_n \}$ If $\alpha = \S a_{i_1...i_p}(x) dx_{i_1} \wedge ... \wedge dx_{i_p} \in \Omega^p(M) $, let $d\alpha = \S da_{i_1...i_p}(x)\wedge dx_{i_1} \wedge ... \wedge dx_{i_p} \in \Omega^p(M)$ Note $d^2 \alpha = 0$ and $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta$ for $\alpha \in \Omega^p(M)$ \l Ex: If $\alpha = a_1(x) dx_1 + a_2(x) dx_2 + a_3(x) dx_3$ $d\alpha = da_1(x) dx_1 + da_2(x) dx_2 + da_3(x) dx_3 =$ $ [ {\partial a_1 \over\partial x_1}dx_1 + {\partial a_1 \over\partial x_2}dx_2 + {\partial a_1 \over\partial x_3}dx_3 ] \wedge dx_1 + [ {\partial a_2 \over\partial x_1}dx_1 + {\partial a_2 \over\partial x_2}dx_2 + {\partial a_2 \over\partial x_3}dx_3 ] \wedge dx_2 + [ {\partial a_3 \over\partial x_1}dx_1 + {\partial a_3 \over\partial x_2}dx_2 + {\partial a_3 \over\partial x_3}dx_3 ] \wedge dx_3$ $ [ 0 + {\partial a_1 \over\partial x_2}dx_2 \wedge dx_1 + {\partial a_1 \over\partial x_3}dx_3 \wedge dx_1] + [ {\partial a_2 \over\partial x_1}dx_1 \wedge dx_2+ 0 + {\partial a_2 \over\partial x_3}dx_3 \wedge dx_2] + [ {\partial a_3 \over\partial x_1}dx_1 \wedge dx_3 + {\partial a_3 \over\partial x_2}dx_2 \wedge dx_3 + 0 ]$ $ [ {\partial a_3 \over\partial x_2} - {\partial a_2 \over\partial x_3}]dx_2 \wedge dx_3 + [{\partial a_1 \over\partial x_3} - {\partial a_3 \over\partial x_1}] dx_3 \wedge dx_1 + [ {\partial a_2 \over\partial x_1} -{\partial a_1 \over\partial x_2}] dx_1 \wedge dx_2 $ $ ( {\partial a_3 \over\partial x_2} - {\partial a_2 \over\partial x_3}, {\partial a_1 \over\partial x_3} - {\partial a_3 \over\partial x_1}, {\partial a_2 \over\partial x_1} -{\partial a_1 \over\partial x_2}) = \nabla \times (a_1, a_2, a_3)$ Note $d^2 \alpha = 0$ Ex: $d([ {\partial a_3 \over\partial x_2} - {\partial a_2 \over\partial x_3}]dx_2 \wedge dx_3 + [{\partial a_1 \over\partial x_3} - {\partial a_3 \over\partial x_1}] dx_3 \wedge dx_1 + [ {\partial a_2 \over\partial x_1} -{\partial a_1 \over\partial x_2}] dx_1 \wedge dx_2) $ $= d[{\partial a_3 \over\partial x_2} - {\partial a_2 \over\partial x_3}]dx_2 \wedge dx_3 + d[{\partial a_1 \over\partial x_3} - {\partial a_3 \over\partial x_1}] dx_3 \wedge dx_1 + d[ {\partial a_2 \over\partial x_1} -{\partial a_1 \over\partial x_2}] dx_1 \wedge dx_2) $ $= [\S {\partial^2 a_3 \over\partial x_2 \partial x_i} - {\partial^2 a_2 \over\partial x_3 \partial x_i} dx_i] \wedge dx_2 \wedge dx_3 + [\S {\partial^2 a_1 \over\partial x_3 \partial x_i} - {\partial^2 a_3 \over\partial x_1 \partial x_i} dx_i] \wedge dx_3 \wedge dx_1 + [\S {\partial^2 a_2 \over\partial x_1 \partial x_i} -{\partial^2 a_1 \over\partial x_2 \partial x_i} dx_i] \wedge dx_1 \wedge dx_2 $ = 0 \end Let $V$ be a finite-dimensional vector space over $\R$. The dual of $V$ = $V^* = \{f: V \rightarrow \R ~|~ f$ linear $\}$ Note $V^*$ is a vector space. The elements of $V^*$ are called {\it covectors}. If $e_1, ..., e_n$ basis for $V$, then $w_1, ..., w_n$ basis for $V^*$ where $w_i: V \rightarrow \R$ where $w_i(e_j) = \delta_{ij} = \cases{1 & $i = j$ \cr 0 & $i \not= j$}$ Let $F_*: V \rightarrow W$ be a linear map between vector spaces \bh The dual map map is $F^*: W^* \rightarrow V^*$, $F(g) = g \circ F$. $F_*$ is injective implies $F^*$ injective $F_*$ is surjective implies $F^*$ surjective $(G_* \circ F_*)^* = F^* \circ G^*$. $d: V \rightarrow (V^*)^*$, $d(v) = h$ where $h: V^* \rightarrow R$, $h(f) = f(v)$. Thus $ (V^*)^*$ is naturally isomorphic to $V$. \l Defn: The dual of $T_pM= T_p^*M$ is the {\it cotangent space} to $M$ at $p$. If $ {\partial \over \partial x_1}, ..., {\partial \over \partial x_m}$ is a basis for $T_pM$, then the dual basis will be denoted $dx_1, ..., dx_m$. %%Defn: The cotangent bundle of M %%$B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)$ %%$B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2)$ \eject $B$ is bilinear if \bh $B(cv_1 + dv_2, w) = cB(v_1, w) + dB(v_2, w) $ \bh $B(v, cw_1 + dw_2) = cB(v, w_1) + dB(v, w_2)$ Thus $B( (v_1, w_1) + (v_2, w_2)) = B(v_1 + v_2, w_1 + w_2)\bh = B(v_1, w_1 + w_2) + B(v_2, w_1 + w_2) \bh = B(v_1, w_1) + B(v_1, w_2) + B(v_2, w_1) + B(v_2, w_2) $ \l $B$ is linear if \bh $B( (v_1, w_1) + (v_2, w_2)) = B( (v_1, w_1)) + B((v_2, w_2))$ \bh $B( c(v_1, w_1)) = cB( (v_1, w_1) $ \l \l Let $( V \times W )^b = \{B: V \times W \rightarrow \R ~|~ B$ bilinear $\}$ $V \tens W = [( V \times W )^b ]^* = \{h: ( V \times W )^b \rightarrow \R ~|~ h$ linear $\}$ If $v \in V, w \in W$, let $v \tens w: ( V \times W )^b \rightarrow \R, ~ (v \tens w)(B) = B(v,w)$ Prop: $v \tens w \in V \tens W$. Proof: $(v \tens w)(c_1B_1 + c_2B_2) = (c_1B_1 + c_2B_2) (v,w) = c_1B_1(v,w) + c_2B_2(v,w)= c_1(v \tens w)(B_1) + c_2(v \tens w)(B_2) $. Prop: $\S r_i(v_i \tens w_i) \in V \tens W$. Proof: $ (\S r_i(v_i \tens w_i)) (c_1B_1 + c_2B_2) = \S r_i(v_i \tens w_i) (c_1B_1 + c_2B_2) =$ \bh $\S c_1r_i(v_i \tens w_i)(B_1) + c_2r_i(v_i \tens w_i)(B_2) =$ $c_1(\S r_i( v_i \tens w_i))(B_1) + c_2 ( \S r_i(v_i \tens w_i))(B_2)$. Note $ (\S r_i(v_i \tens w_i)) (B) = \S r_i(v_i \tens w_i) (B) = \S r_i B(v_i, w_i)$ Prop: The product $\tens$ is bilinear: Proof: $( (c_1 v_1 + c_2v_2) \tens w)(B) = B(c_1 v_1 + c_2v_2, w) = c_1B(v_1, w) + c_2B(v_2, w) $ \bh and ... Claim: $V \tens W = < v \tens w ~|~ v \in V, w \in W, $ \rightline{$(c_1 v_1 + c_2v_2) \tens w = c_1 (v_1 \tens w) + c_2 (v_2 \tens w),$} \rightline{$v \tens (c_1w_1 + c_2w_2) = c_1(v \tens w_1) + c_2(v \tens w_2)>$} $= < v \tens w ~|~ v \in V, w \in W, $ {$( v_1 + v_2) \tens w = v_1 \tens w + v_2 \tens w,$} \rightline{$v \tens (w_1 + w_2) = v \tens w_1 + v \tens w_2, (cv) \tens w = c(v \tens w) = v \tens (cw)>$} \eject Let $v_1,..., v_m$ be a basis for $V$, $w_1,..., w_n$ basis for $W$. If $B$ is a bilinear form, then $B$ is uniquely determined by the $nm$ values $B(v_i,w_j)$. Thus $dim( V \times W )^b = nm = V \tens W $. Hence a basis for $ V \tens W $ is $\{v_i \tens w_j ~|~ i =1,..., m, j = 1, ..., n\}$ Thus $V \tens W = \{ \Sigma c_{ij} v_i \tens w_j ~|~$ {$( v_1 + v_2) \tens w = v_1 \tens w + v_2 \tens w,$} \rightline{$v \tens (w_1 + w_2) = v \tens w_1 + v \tens w_2, (cv) \tens w = c(v \tens w) = v \tens (cw)\}$} \l The universal mapping property: There exists $\phi$, $V \tens W$ such that $\phi$ is bilinear and given any bilinear map: $B: V \times W \rightarrow U$, there exists a map $A: V \tens W\rightarrow U$ such that $A \circ \phi = B$. Moreover $\phi$ and $V \tens W$ are unique in the sense that if $X$ and $\psi$ satisfy the universal mapping property, then there exists an isomorphism $f: V \tens W \rightarrow X$ such that $f \circ \phi = \psi$ Fix $B: V \times W \rightarrow U$ and take $f: U \rightarrow \R \in U^*$ Then $f \circ B: V \times W \rightarrow \R$ is bilinear: $(f \circ B)(c_1v_1 + c_2v_2, w) = f(c_1B(v_1, w) + c_2B(v_2, w) ) = c_1(f \circ B)(v_1, w) + c_2(f \circ B)(v_2, w)$ Similarly $(f \circ B)(v, c_1w_1 + c_2w_2) = c_1(f \circ B)(v, w_1) + c_2(f \circ B_(v, w_2)$ Thus $f \circ B \in ( V \times W )^b$ $\alpha: U^* \rightarrow ( V \times W )^b$, $\alpha(f) = f \circ B$ Thus $\beta: V \tens W \rightarrow (U^*)^*$, $\beta$ \l The tensor algebra = $T(V) = \oplus_{k=0}^\infty (\tens^k V)$ $c_0 + c_1v_i + \Sigma c_{ij} v_i \tens v_j + ... + \Sigma c_{i_1...i_p} v_{i_1} \tens ... \tens v_{i_p}$ $( v_{1} \tens ... \tens v_{p})$$( u_{1} \tens ... \tens u_{q})$ $= v_{1} \tens ... \tens v_{p}\tens u_{1} \tens ... \tens u_{q}$ A subring $I$ of a ring $R$ is an {\it ideal} of $R$ if $ar \in I$ and $ra \in I$ for all $a \in I$, $r \in R$. Let $I(V) =$ ideal generated by $\{v \tens v ~|~ v \in V\}$ The exterior algebra of $V$ is the quotient $\Lambda^*V = T(V) /I(V)$ Let $\pi: T(V) \rightarrow \Lambda^*V$ be the quotient map. The {\it $p$-fold exterior power of $V$} is $\Lambda^pV = \pi (\tens^pV) = (M(v_1, ..., v_n))^*$, the dual of the space of multilinear forms. The {\it exterior product} of $\alpha = \pi(a) \in \Lambda^pV$ and $\beta = \pi(b) \in \Lambda^qV is $$\alpha \wedge \beta = \pi(a \tens b)$$ \l