\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 10truein \def\R{{\bf R}} \def\C{{\bf C}} \def\N{{\bf N}} \def\r{{\bf r}} \def\c{{\bf c}} \def\p{{\bf p}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\0{{\bf 0}} \def\a{{\bf a}} \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} $T_p(M) = \{v: G(p) \rightarrow \R ~|~ v $ is linear and satisfies the Leibniz rule $ \}$ $G(p) = \{[g] ~|~ g^{smooth}: U \rightarrow \R$, for some $U^{open}$ such that $p \in U \subset M \}$ is an algebra over $\R$. $v \in T_p(M)$ is called a {\it derivation} \vskip 5pt \hrule \vskip -5pt The directional derivative of $[g]$ in direction $[\alpha]$ = $$D_{\alpha} g = {d(g \circ \alpha) \over dt}|_{t = 0} = g'(\alpha(0))\alpha'(0) \in \R$$ Properties: $D_\alpha$ is linear and satisfies the Liebniz rule. i.e, 1a.) $D_{\alpha }(g+h)=D_{\alpha }g+D_{\alpha }h$ \hfill 1b.) $D_{\alpha }(cg)=cD_{\alpha }g$ 2.) $D_{\alpha }(g\cdot h)=D_{\alpha }g\cdot h(p)+g(p)\cdot D_{\alpha }h$ Thus $D_\alpha \in T_p(M)$ \vskip 5pt \hrule \vskip -5pt Thm: Let $M$ be an $m$-manifold, then $T_p(M)$ is an $m$-dimensional real vector space. [$(c_1v + c_2w)(f) = c_1v(f) + c_2 w(f)$]. Take a chart $(U, \phi)$ at $p$ where $\phi(p) = \0$, The {\it standard basis} for $T_p(M)$ w.r.t.$(U, \phi)$ = $\{v_1, ..., v_m\}$, where $v_i = D_{\alpha_i}$ and $\alpha_i: (-\ep, \ep) \rightarrow M$, $\alpha_i(t) = \phi^{-1}(0, ..., t, ..., 0) $ for some $\ep > 0$. \vfill \eject Prop: $\{v_1, ..., v_m\}$ are linearly independent. Proof: Evaluate $v_i$ at a ``projection map". Thm: $\{v_1, ..., v_m\}$ span $T_p(M)$. If $v \in T_p(M)$, then $v = \Sm a_i v_i$ where $a_i = v([\pi_i \circ \phi])$ Prop: If $v$ is a derivation, and $f$ is constant, then $v(f) = 0$. \vskip 10pt \hrule Suppose $f^{smooth}: M \rightarrow N$, $f(p) = q$. The {\it tangent (or differential) map}, $$df_p:T_pM \rightarrow T_qN$$ $df_p(v) =$ the derivation which takes $[g] \in G(q)$ to the real number $v([g \circ f])$ I.e., $df_p$ takes the derivation $(v:G(p) \rightarrow \R) \in T_pM$ \vskip 10pt \centerline{to the derivation in $T_qN$ which takes ~~~~~~} \vskip 10pt \rightline {the germ $[g] \in G(q)$ to the real number $v([g \circ f])$.} \vskip 10pt \hrule Suppose $f: M \rightarrow N$ is smooth. Then $f^*: G(q) \rightarrow G(p)$ is a homomorphism. Let $V$ be a real vector space. \hfil \break Then the dual space, $V^* = \{ f: V \rightarrow \R ~|~ f$ is linear $\}$ Proposition: With respect to this choice of basis, the matrix of $% d_{p}f$:~$T_{p}M\rightarrow T_{q}N$ is $({\partial F_{i} \over \partial x_{j}})_{\varphi _{(p)}}$, where $x_{j}$ are coordinates in $\R^{m}$ and $F_{i}=(F_{1},\cdots ,F_{n})$ in coordinates for $% \R^{n}$. \vfill \eject Here are some more properties of $d_{p}f$ and $T_{p}M$: Let $f$\emph{:}~$M\rightarrow N$ be smooth. 1.) If $f${:}~$M\rightarrow N$ is a diffeomorphism, the $d_{p}f$ is an isomorphism, for all $p\in M$. 2.) If $d_{p}f=0$ for all $p\in M$ iff $f$ is a constant map. 3.) If $id: M \rightarrow M$, $id(x) = x$, then $d_{p}(id) = I_m$ 4.) $d_r(f \circ h) = d_p(f) \circ d_r (h)$ where $p = h(r)$. 5.) If $N\cong M/G,$ where $G$ is a discrete Lie group acting properly discontinuously on $M$, and $f$:~$M\rightarrow M/G$ is the orbit map, the $d_{p}f$ is an isomorphism for all $p$. 6.) $T_{(p,q)}(M\times N)\cong T_{p}(M)\times T_{q}(N)$. \vfill \eject Rank Theorem: Suppose $A_0 \subset \R^n$, $B_0 \subset \R^m$, $F: A_0 \rightarrow B_0 \in C^1$ $a \in A_0, b \in B_0$. Suppose rank F = $k$. Then there exists $A^{open} \subset A_0$ such that $a \in A$ and $B^{open} \subset B_0$ such that $b \in B$ and $G, H$, $C^r$ diffeomorphisms such that $G: A \rightarrow U^{open} \subset \R^n$, $H: B \rightarrow V^{open} \subset \R^m$ and $$H \circ F \circ G^{-1} (x_1, ..., x_n) = (x_1, ..., x_k, 0, ..., 0)$$ \vskip 5pt \hrule \vskip -5pt Proposition: rank $DF(a) = k$ implies there exists $V$ open such that $a \in V$ and $DF(x) \geq k$ for all $x \in V$ Proof: Rank of $A$ = $dim(span\{\r_1, ..., \r_m\}) = dim(span\{\c_1, ..., \c_m\})$ \rightline{= maximum order of any nonvanishing minor determinant.} Use determinant is a continuous function. \vskip 5pt \hrule \vskip -5pt Thm 6.4 (Inverse Function Theorem): Suppose $F: W^{open} \subset \R^n \rightarrow \R^n \in C^r$. Suppose for $a \in W$, $det(DF_a) \not=0$. Then there exists $U$ such that $a \in U^{open}$, $V = F(U)$ is open, and $F: U \rightarrow V$ is a $C^r$-diffeomorphism. Moreover, for $x \in U$ and $y = F(x)$, $DF^{-1}_y = (DF_x)^{-1}$ \end 3.4 1, 4, 8, 10, 12, 13, 21, 24