%%\input eplain \magnification 1400 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 9.8truein \def\emph{} \def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} \def\l{\vskip 5pt \hrule \vskip -5pt} $G(p, N) = \{[g] ~|~ g^{smooth}: U \rightarrow N$, for some $U^{open}$ such that $p \in U \subset M \}$ $G(p) = G(p, \R)$ $C^{\infty}(M) = \{g ~|~ g^{smooth}: M \rightarrow \R \}$ $C^{\infty}(p) = \{g ~|~ g^{smooth}: U \rightarrow N$, for some $U^{open}$ such that $p \in U \subset M \}$ \l $D$ is a derivation iff $ D: C^\infty (p) \rightarrow \R$ and $D$ is linear and satisfies the Leibniz rule. That is $D$ is a derivation if $D(f) \in \R$,\bh $D(cf) = cD(f)$, $D(f+g) = D(f) + D(g)$, \bh $D(fg) = f(p)Dg + g(p)Df$ \vskip 5pt \hrule \vskip -5pt Let $\alpha: I \rightarrow M$ where $I =$ an interval $\subset \R$, $\alpha(0) = p$. Note $[\alpha] \in G[0, M]$ Directional derivative of $[g]$ in direction $[\alpha]$ = $$D_\alpha g = {d(g \circ \alpha) \over dt}|_{t = 0} \in \R$$ $D_\alpha: G(p) \rightarrow \R$ is a derivation. \vskip 5pt \hrule \vskip -5pt $T_p(M) = \{v: G(p) \rightarrow \R ~|~ v $ is linear and satisfies the Leibniz rule $ \}$ $v \in T_p(M)$ is called a {\it derivation} \vskip 5pt \hrule \vskip -5pt Given a chart $(U, \phi)$ at $p$ where $\phi(p) = \0$, the {\it standard basis} for $T_p(M)$ = $\{( {\partial \over \partial x_1} )_p, ..., ( {\partial \over \partial x_m} )_p \}$, where $({\partial \over \partial x_i} )_p= D_{\alpha_i}$ and for some $\ep > 0$, $\alpha_i: (-\ep, \ep) \rightarrow M$, $\alpha_i(t) = \phi^{-1}(0, ..., t, ..., 0) $ If $v \in T_p(M)$, then $v = \Sm a_i ({\partial \over \partial x_1} )_p$ where $a_i = v([\pi_i \circ \phi])$ \l \vfill \eject $TM= \cup_{p \in M} T_p(M) = \left\{ \left( p,v\right) \mid p\in M,v\in T_{p}M\right\} $, let $\pi$:$~TM\rightarrow M$ be defined by $\pi(p,v)=p$. Let $(\phi, U)$ be a chart for $M$. If $q \in U$, let $\{ ( {\partial \over \partial x_1} )_q, ..., ( {\partial \over \partial x_m} )_q \}$ be the standard basis (w.r.t $(\phi, U)$) for $T_q(M) = T_q$ $t_{\phi}$:$~\pi^{-1}(U) \rightarrow \phi(U)\times{\R}^{m} \subset \R^{2m}$, $t_{\phi}(q, v) = (\phi(q), a_1, ..., a_m)$ where $v = \Sm a_i ( {\partial \over \partial x_i} )_q$ Let ${\cal A}$ be a maximal atlas for $M$. Basis for topology on $TM:$ \bh $\{W ~|~ \exists (\phi, U) \in {\cal A}$ s.t. $W \subset \pi^{-1}(U)$ and $ t_\phi(W)$ open in $\R^{2m} \}$ Claim: $TM$ is a $2m-$manifold and \bh ${\cal C} = \{(t_\phi, \pi^{-1}(U)) ~|~ (\phi, U) \in {\cal A}\}$ is a pre-atlas for $TM$. $\pi$:$~TM\rightarrow M$, $\pi(p,v)=p$ is smooth $df: TM \rightarrow TN$ defined by $df(p,v) = (f(p), d_pf(v))$ is smooth if $f: M \rightarrow N$ is smooth. Proof: See Hitchin 4.1 (in Chapter 1 of\bh http://www2.maths.ox.ac.uk/~hitchin/hitchinnotes/hitchinnotes.html \eject Defn: A {\it vector field} or {\it section of the tangent bundle} $TM$ is a smooth function \bh $s{:~}M\rightarrow TM$ so that $\pi\circ s={id}$ [i.e., $s(p) = (p, v_p)]$. Ex: If $M = \R$, let $s(p) = (p, ({d\over dx})_p)$ Sometimes we will drop the p and write $s(p) = ({d\over d x})_p$ Let $f \in C^{\infty}(\R)$. For all $p \in \R$, $s(p)(f) = ({df \over dx})_p = {df \over dx}(p) $ Define $s_f: \R \rightarrow \R$, $s_f(p) = {df \over dx}(p)$. ~~~~~ I.e., $s_f = {df \over dx}$ Note $s_f$ is smooth. We can think of a vector field as a function \bh $S: C^{\infty}(M) \rightarrow C^{\infty}(M)$, $S(f) = s_f$ Ex: $S: C^{\infty}(\R) \rightarrow C^{\infty}(\R)$, $S(f) = {df \over dx}$.~~~~~~ I.e., $S = {d \over dx}$ \l Ex: If $M = \R$, then $s(p) = a(p)({d\over dx})_p$ where $a: \R \rightarrow \R$ is a smooth function. Let $f \in C^{\infty}(\R)$. \bh For all $p \in \R$, $s(p)(f) = a(p)({df \over dx})_p = a(p){df \over dx}(p) $ Define $s_f: \R \rightarrow \R$, $s_f(p) = a(p){df \over dx}(p)$. ~~~~~ I.e., $s_f = a {df \over dx}$ Note $s_f$ is smooth. We can think of a vector field as a function \bh $S: C^{\infty}(M) \rightarrow C^{\infty}(M)$, $S(f) = s_f$ Ex: $S: C^{\infty}(\R) \rightarrow C^{\infty}(\R)$, $S(f) = a{df \over dx}$ I.e., $S = a{d \over dx}$ \eject In the above we used the charts $\phi_p: \R \rightarrow \R, \phi_p(x) = x - p$. Thus ${d(g (\phi_p^{-1}(x)) ) \over dx}|_{x = 0} $ $ = {d(g (x + p) ) \over dx}|_{x = 0} = {dg \over dx}(p) $ Note $\phi_0(x) = \phi_p (x + p)$. Thus $ {d(\phi_p (\phi_0^{-1}(x) ) \over dx}|_{x = 0} = {d(\phi_p( \phi_p^{-1}(x+p) )) \over dx}|_{x = 0} = {d(x+p) \over dx}|_{x = 0} = 1$ \vfil \l If we use the chart $\psi_q: \R \rightarrow \R, \psi_q(x) = q - x$. Then ${d(g (\psi_p^{-1}(x)) ) \over dx}|_{x = 0} $ $ = {d(g (p-x) ) \over dx}|_{x = 0} = {-dg \over dx}(p) $ Note ${d(\psi_q (x + p) ) \over dx}|_{x = 0} = {d\psi_q \over dx}|_p= {d(q-x) \over dx}|_p = -1 $ Example of a non-smooth vector field on $\R$: If $p \geq 0$, let $s(p) = (p, ({d\over dx})_p)$ \bh [i.e., the basis element of $T_p(\R)$ from $\phi_p$] If $p < 0$, let $s(p) = (p, (-{d\over dx})_p)$ \bh [i.e., the basis element of $T_p(\R)$ from $\psi_p$] \l \vfil Ex: If $M = \R^2$, then $s(\p) = a(\p) ({\partial \over \partial x})_\p + b(\p) ({\partial \over \partial y})_\p$ where $a, b: \R^2 \rightarrow \R$ are smooth functions. Ex: Let $\{( {\partial \over \partial x_1})_p, ..., ( {\partial \over \partial x_m})_p\}$ be a basis for $T_p(M)$. Let $s: M \rightarrow TM$, $s(p) = (p, \Sm a_i(p) ({\partial \over \partial x_i})_p)$ \vfil \l Defn: $s$ is {\it never zero} if $s(p) \not = (p, \0)$ for all $p \in M$. Prop: Let $G$ be a Lie group. Then $G$ admits a never-zero vector field. Note: $S^n$ admits a never-zero vector field iff $n$ odd. \vfil \l \eject Let $p_2(s(p)) = p_2(p, v_p) = v_p$ Defn: The vector fields $s_1, ..., s_k$ are {\it linearly independent} iff for all $p \in M$, \bh $p_2(s_1(p)), ..., p_2(s_k(p))$ are linearly independent. Defn: $M$ is parallelizable (or equivalently the \emph{``tangent bundle }$\pi$% \emph{:~}$TM\rightarrow M$\emph{ is trivial''}) iff $TM$ admits $m$ linearly independent vector fields. Suppose $M$ is parallelizable. Thus for each $p \in M$, let $\{ v_{1, p}, ..., v_{m, p}\}$ be ANY basis for $T_p(M)$ such that $s_i: M \rightarrow TM$, $s_i(p) = (p, v_{i, p} )$ is a SMOOTH vector field. NOTE: We can form $m$ vector fields using basis elements iff $M$ is parallelizable. When $M$ is parallelizable, we can define: $t: TM \rightarrow M \times R^m $, $t(p, v) = (p, a_1, ..., a_m)$ where $v = \Sm a_i v_{i, p} $ Let $\rho_1: M \times R^m \rightarrow M$, $\rho_1(p, \x) = p$. $\rho_2: M \times R^m \rightarrow R^m$, $\rho_1 (p, \x) = \x$. $\rho_1 \circ t: TM \rightarrow M$, $(\rho_1 \circ t)(p, v) = \pi(p, v) = p$ Recall $\pi^{-1}(p) = T_p(M) $ Prop: $t|_{T_p(M) }: T_p(M) \rightarrow \{p\} \times R^m $ is a linear isomorphism for all $p$. or equivalently, $\rho_2 \circ t|_{T_p(M) }: T_p(M) \rightarrow R^m$ is a linear isomorphism for all $p$. since $\rho_2 \circ t|_{T_p(M) } (\Sm a_i v_{i, p} )= (a_1, ..., a_m)$ HENCE: $t: TM \rightarrow M \times R^m $ is a diffeomorhism. Note that for all $p \in M$, given a basis $\{v_{1, p}, ..., v_{m, p}\}$ be a basis for $T_p(M)$, we can always define a linear isomorphim: \vskip 5pt \centerline{$t_p: T_p(M) \rightarrow R^m, ~T(\Sm a_i v_{i, p} )= (a_1, ..., a_m)$} However, $t: TM \rightarrow M \times R^m$, $t(p, v) = (p, t_p(v))$ may not be smooth (recall example of non-smooth vector field on p. 4). In general $TM$ may not be diffeomorphic to $M \times R^m $. \eject Randell 3.4 The bracket of two vector fields. Defn: A {\it vector field} or {\it section of the tangent bundle} $TM$ is a smooth function \bh $s{:~}M\rightarrow TM$ so that $\pi\circ s={id}$ [i.e., $s(p) = (p, v_p)]$. I.e, $s$ takes $p \in M$ to the derivation $v_p: C^{\infty}(M) \rightarrow \R$ Let $f \in C^{\infty}(M)$ Define $s_f: M \rightarrow \R$, $s_f(p) = v_p([f])$ where $s(p) = (p, v_p)$ Note $s_f$ is smooth. Thus we can think of a vector field as a function \bh $S: C^{\infty}(M) \rightarrow C^{\infty}(M)$, $S(f) = s_f$ \vfill Lemma 3.4.2: Let $S:C^{\infty}(M)\rightarrow C^{\infty}(M)$ be linear, and suppose $S(fg)(p)=f(p)\cdot S(g)(p)+S(f)(p)\cdot g(p)$. Then $S$ is a vector field. Proof: Define $s: M \rightarrow TM$, $s(p) = (p, S_p)$ where Define $S_p: C^{\infty}(M) \rightarrow \R$, $S_p(f) = S(f)(p)$, i.e, the function $S(f)$ evaluated at $p$. Claim $S_p$ is a derivation. Show $S_p$ is linear and satisfies the Leibniz rule. Claim $s$ is smooth. Defn: If $A, B$ are vector fields, let $AB = A \circ B$ Defn: The {\it Lie Bracket} of vector fields $A$ and $B$ is $[A, B] = AB - BA: C^{\infty}(M)\rightarrow C^{\infty}(M)$. Thm: The Lie bracket of vector fields is a vector field. \eject Defn: A {\it flow} on $M$ is a smooth action of the Lie group ${\R}^{1}$ on $M$, $\sigma$:~${\R}% ^{1}\times M\rightarrow M$. A flow is also called a {\it dynamical system}. {A {\it flow line} is the smooth path $\alpha_p: \R \rightarrow M$, $\alpha_p(t) = \sigma(t, p)$.} \l Randell 3.3 Defn: A {\it flow} on $M$ is a smooth action of the Lie group ${\R}^{1}$ on $M$, $\sigma$:~${\R}% ^{1}\times M\rightarrow M$. A flow is also called a {\it dynamical system}. $ \sigma(t, m) = \sigma_t(m) $ $\sigma_0(m) = m $, \hfil $\sigma_t \circ \sigma_s (m) = \sigma_{t+s} (m) = \sigma_s \circ \sigma_t (m)$ $\sigma_{-t} = \sigma_t^{-1}$ $\sigma_t: M \rightarrow M$ is a diffeomorphism. Ex: $\sigma: \R \times \R^2 \rightarrow \R^2$, $\sigma_t(x, y) = (x, y) + t(1, 2)$ \vfill Defn: The {\it orbit} of $x \in M$ = \hfil \break $\R(x) = \{ y \in M ~|~ \exists t \in \R$ such that $y = tx\}$ \vskip 10pt \line{A {\it flow line} is the smooth path $\alpha_p: \R \rightarrow M$, $\alpha_p(t) = \sigma(t, p)$.} Prop: each $q \in M$ lies on a unique flow line. \vfill ``differentiating along the flow'': Given a flow $\sigma$ on $M$, define $s_{\sigma}$:~$M\rightarrow TM$ by $s_{\sigma}(p)=\left( p,d\alpha_{p}/dt|~_{t=0}\right) $ \vfill Proposition 3.3.3: $s_{\sigma}$ is a section of $TM$. \eject Let $\alpha: I \rightarrow M$ where $I =$ an interval $\subset \R$, $\alpha(0) = p$. Note $[\alpha] \in G[0, M]$ Directional derivative of $[g]$ in direction $[\alpha]$ = $D_\alpha g = {d(g \circ \alpha) \over dt}|_{t = 0} \in \R$ $D_\alpha: G(p) \rightarrow \R$ is a derivation. \vskip 5pt \hrule \vskip -5pt Given a chart $(U, \phi)$ at $p$ where $\phi(p) = \0$, the {\it standard basis} for $T_p(M)$ = $\{( {\partial \over \partial x_1} )_p, ..., ( {\partial \over \partial x_m} )_p \}$, where $({\partial \over \partial x_i} )_p= D_{\alpha_i}$ and for some $\ep > 0$, $\alpha_i: (-\ep, \ep) \rightarrow M$, $\alpha_i(t) = \phi^{-1}(0, ..., t, ..., 0) $ If $v \in T_p(M)$, then $v = \Sm a_i ({\partial \over \partial x_1} )_p$ where $a_i = v([\pi_i \circ \phi])$ \l Let $(U, \phi)$ be a chart for $M$ such that $\0 \in \phi(U)$. Suppose $q \in U$. Choose $\ep > 0$ such that $B(\phi(q), \ep) \subset \phi(U)$ and $B(\0, \ep) \subset \phi(U)$. Let $\tau_q: B(\phi(q), \ep) \rightarrow B(\0, \ep) $, $ \tau_q(\x) = \x - \phi(q)$. the {\it standard basis} for $T_q(M)$ with respect to $(U, \phi)$ = \rightline{the standard basis for $T_q(M)$ with respect to $(\phi^{-1}(B(\0, \ep)), \tau_q \circ \phi)$ } Hence the standard basis (w.r.t. $(U, \phi)$) = $\{( {\partial \over \partial x_1} )_q, ..., ( {\partial \over \partial x_m} )_q \}$, where $({\partial \over \partial x_i} )_q= D_{\alpha_i}$ $\alpha_i: (-\ep, \ep) \rightarrow M$, $\alpha_i(t) = \phi^{-1}(\tau^{-1}(0, ..., t, ..., 0)) $ \f \rightline{$= \phi^{-1}(\phi_1(q), ..., \phi_{i-1}(q), \phi_{i}(q) + t, \phi_{i+1}(q), ..., \phi_{m}(q) ) $ ~~~~~~ where $\phi_i = \pi_i \circ \phi$. } \l Suppose $f: M \rightarrow \R$ is smooth. Recall $f$ is smooth iff for all $p \in M$, there exists a chart $(U, \phi)$ such that $p \in U$ and $f \circ \phi^{-1}: \phi(U) \subset \R^m \rightarrow \R$ is smooth. Claim: ${\partial f \over \partial x_i}: U \rightarrow \R$, ${\partial f \over \partial x_i}(q) = ( {\partial \over \partial x_i} )_q(f)$ is smooth. NOTE: ${\partial f \over \partial x_i}: U \rightarrow \R$ is only defined on $U$, and is NOT a globally defined function on $M$. We will show that for $p \in U$ and w.r.t the chart $(\phi^{-1}(B(\0, \ep)), \tau_p \circ \phi)$ ${\partial f \over \partial x_i} \circ (\tau_p \circ \phi)^{-1}: B(\0, \ep) \subset \R^m \rightarrow \R$ is smooth. Let $q = (\tau_p \circ \phi)^{-1}(\x) $ %%$( \phi)^{-1}(\x + \phi(p))$ ${\partial f \over \partial x_i} \circ (\tau_p \circ \phi)^{-1}(\x) = $ %%${\partial f \over \partial x_i}(( \phi)^{-1}(\x + \phi(p)))$ ${\partial f \over \partial x_i}(q) = $ $( {\partial \over \partial x_i} )_q(f) = $ $D_{\alpha_i}(f) = {d(f \circ \alpha_i) \over dt}|_{t = 0} = $ ${d((f \circ \phi^{-1})(\phi_1(q), ..., \phi_{i-1}(q), \phi_{i}(q) + t, \phi_{i+1}(q), ..., \phi_{m}(q) ) ) \over dt}|_{t = 0} = $ ${\partial ( f \circ \phi^{-1}) \over \partial x_i}|_{\phi(q)} $ \vfill \end $$\commdiag{Y&\mapright^f&E\cr \mapdown&\arrow(3,2)\lft{f_t}&\mapdown\cr Y\times I&\mapright^{\bar f_t}&X}$$ \vskip 5pt \hrule \vskip -5pt $T_p(M) = \{v: G(p) \rightarrow \R ~|~ v $ is linear and satisfies the Leibniz rule $ \}$ $v \in T_p(M)$ is called a {\it derivation} $G(p) = \{[g] ~|~ g^{smooth}: U \rightarrow \R$, for some $U^{open}$ such that $p \in U \subset M \}$ $C^{\infty}(M) = \{g ~|~ g^{smooth}: M \rightarrow \R \}$ $Z_a = \{g ~|~ g^{smooth}: M \rightarrow \R, Dg_a = 0 \}$ The cotangent space $T^*_a = C^{\infty}(M)/ Z_a$. $T^*_a$ is an $m-$dimensional vector space: $(df)_a