\magnification 1400 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.4truein \vsize 10truein \def\emph{} %%\def\S{\Sigma_{i=1}^n} \def\Sm{\Sigma_{i=1}^m} \def\S{\sum_{i=1}^n} \def\s{{\sigma}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\h{\hskip 10pt} \def\u{\vskip -8pt} \def\bh{\hfil \break} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\0{{\bf 0}} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{{\bf p}} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} \def\grad{ \nabla } \def\tens{ \otimes } \def\l{\vskip 5pt \hrule \vskip -5pt} Let $V$ be a finite-dimensional vector space over $\R$. The dual of $V$ = $V^* = \{f: V \rightarrow \R ~|~ f$ linear $\}$ Note $V^*$ is a vector space. The elements of $V^*$ are called {\it covectors}. If $e_1, ..., e_n$ basis for $V$, then $w_1, ..., w_n$ basis for $V^*$ where $w_i: V \rightarrow \R$ where $w_i(e_j) = \delta_{ij} = \cases{1 & $i = j$ \cr 0 & $i \not= j$}$ Let $F_*: V \rightarrow W$ be a linear map between vector spaces \bh The dual map map is $F^*: W^* \rightarrow V^*$, $F(g) = g \circ F$. $F_*$ is injective implies $F^*$ injective $F_*$ is surjective implies $F^*$ surjective $(G_* \circ F_*)^* = F^* \circ G^*$. $d: V \rightarrow (V^*)^*$, $d(v) = h$ where $h: V^* \rightarrow R$, $h(f) = f(v)$. Thus $ (V^*)^*$ is naturally isomorphic to $V$. \l Defn: The dual of $T_pM= T_p^*M$ is the {\it cotangent space} to $M$ at $p$. If $ {\partial \over \partial x_1}, ..., {\partial \over \partial x_m}$ is a basis for $T_pM$, then the dual basis will be denoted $dx_1, ..., dx_m$. %%Defn: The cotangent bundle of M %%$B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)$ %%$B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2)$ \eject $B$ is bilinear if \bh $B(cv_1 + dv_2, w) = cB(v_1, w) + dB(v_2, w) $ \bh $B(v, cw_1 + dw_2) = cB(v, w_1) + dB(v, w_2)$ Thus $B( (v_1, w_1) + (v_2, w_2)) = B(v_1 + v_2, w_1 + w_2)\bh = B(v_1, w_1 + w_2) + B(v_2, w_1 + w_2) \bh = B(v_1, w_1) + B(v_1, w_2) + B(v_2, w_1) + B(v_2, w_2) $ \l $B$ is linear if \bh $B( (v_1, w_1) + (v_2, w_2)) = B( (v_1, w_1)) + B((v_2, w_2))$ \bh $B( c(v_1, w_1)) = cB( (v_1, w_1) $ \l \l Let $( V \times W )^b = \{B: V \times W \rightarrow \R ~|~ B$ bilinear $\}$ $V \tens W = [( V \times W )^b ]^* = \{h: ( V \times W )^b \rightarrow \R ~|~ h$ linear $\}$ If $v \in V, w \in W$, let $v \tens w: ( V \times W )^b \rightarrow \R, ~ (v \tens w)(B) = B(v,w)$ Prop: $v \tens w \in V \tens W$. Proof: $(v \tens w)(c_1B_1 + c_2B_2) = (c_1B_1 + c_2B_2) (v,w) = c_1B_1(v,w) + c_2B_2(v,w)= c_1(v \tens w)(B_1) + c_2(v \tens w)(B_2) $. Prop: $\S r_i(v_i \tens w_i) \in V \tens W$. Proof: $ (\S r_i(v_i \tens w_i)) (c_1B_1 + c_2B_2) = \S r_i(v_i \tens w_i) (c_1B_1 + c_2B_2) =$ \bh $\S c_1r_i(v_i \tens w_i)(B_1) + c_2r_i(v_i \tens w_i)(B_2) =$ $c_1(\S r_i( v_i \tens w_i))(B_1) + c_2 ( \S r_i(v_i \tens w_i))(B_2)$. Note $ (\S r_i(v_i \tens w_i)) (B) = \S r_i(v_i \tens w_i) (B) = \S r_i B(v_i, w_i)$ Prop: The product $\tens$ is bilinear: Proof: $( (c_1 v_1 + c_2v_2) \tens w)(B) = B(c_1 v_1 + c_2v_2, w) = c_1B(v_1, w) + c_2B(v_2, w) $ \bh and ... Claim: $V \tens W = < v \tens w ~|~ v \in V, w \in W, $ \rightline{$(c_1 v_1 + c_2v_2) \tens w = c_1 (v_1 \tens w) + c_2 (v_2 \tens w),$} \rightline{$v \tens (c_1w_1 + c_2w_2) = c_1(v \tens w_1) + c_2(v \tens w_2)>$} $= < v \tens w ~|~ v \in V, w \in W, $ {$( v_1 + v_2) \tens w = v_1 \tens w + v_2 \tens w,$} \rightline{$v \tens (w_1 + w_2) = v \tens w_1 + v \tens w_2, (cv) \tens w = c(v \tens w) = v \tens (cw)>$} \eject Let $v_1,..., v_m$ be a basis for $V$, $w_1,..., w_n$ basis for $W$. If $B$ is a bilinear form, then $B$ is uniquely determined by the $nm$ values $B(v_i,w_j)$. Thus $dim( V \times W )^b = nm = V \tens W $. Hence a basis for $ V \tens W $ is $\{v_i \tens w_j ~|~ i =1,..., m, j = 1, ..., n\}$ Thus $V \tens W = \{ \Sigma c_{ij} v_i \tens w_j ~|~$ {$( v_1 + v_2) \tens w = v_1 \tens w + v_2 \tens w,$} \rightline{$v \tens (w_1 + w_2) = v \tens w_1 + v \tens w_2, (cv) \tens w = c(v \tens w) = v \tens (cw)\}$} \l The universal mapping property: There exists $\phi$, $V \tens W$ such that $\phi$ is bilinear and given any bilinear map: $B: V \times W \rightarrow U$, there exists a map $A: V \tens W\rightarrow U$ such that $A \circ \phi = B$. Moreover $\phi$ and $V \tens W$ are unique in the sense that if $X$ and $\psi$ satisfy the universal mapping property, then there exists an isomorphism $f: V \tens W \rightarrow X$ such that $f \circ \phi = \psi$ Fix $B: V \times W \rightarrow U$ and take $f: U \rightarrow \R \in U^*$ Then $f \circ B: V \times W \rightarrow \R$ is bilinear: $(f \circ B)(c_1v_1 + c_2v_2, w) = f(c_1B(v_1, w) + c_2B(v_2, w) ) = c_1(f \circ B)(v_1, w) + c_2(f \circ B)(v_2, w)$ Similarly $(f \circ B)(v, c_1w_1 + c_2w_2) = c_1(f \circ B)(v, w_1) + c_2(f \circ B_(v, w_2)$ Thus $f \circ B \in ( V \times W )^b$ $\alpha: U^* \rightarrow ( V \times W )^b$, $\alpha(f) = f \circ B$ Thus $\beta: V \tens W \rightarrow (U^*)^*$, $\beta$ \l The tensor algebra = $T(V) = \oplus_{k=0}^\infty (\tens^k V)$ $c_0 + c_1v_i + \Sigma c_{ij} v_i \tens v_j + ... + \Sigma c_{i_1...i_p} v_{i_1} \tens ... \tens v_{i_p}$ $( v_{1} \tens ... \tens v_{p})$$( u_{1} \tens ... \tens u_{q})$ $= v_{1} \tens ... \tens v_{p}\tens u_{1} \tens ... \tens u_{q}$ A subring $I$ of a ring $R$ is an {\it ideal} of $R$ if $ar \in I$ and $ra \in I$ for all $a \in I$, $r \in R$. Let $I(V) =$ ideal generated by $\{v \tens v ~|~ v \in V\}$ The exterior algebra of $V$ is the quotient $\Lambda^*V = T(V) /I(V)$ \l \end