\magnification 2000 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 9.8truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} Defn: $G$ is a {\it topological group} if \h 1.) $(G, *)$ is a group \h 2.) $G$ is a topological space. \h 3.) $*: G \times G \rightarrow G$, $*(g_1, g_2) = g_1*g_2$, and \centerline{~~~~~~~~~~~~~$In: G \rightarrow G$, $In(g) = g^{-1}$ are both continuous functions.} Defn: $G$ is a {\it Lie group} if \h 1.) $G$ is a topological group \h 2.) $G$ is a smooth manifold. \h 3.) $*$ and $In$ are smooth functions. Ex: $(\R, +)$, $(\R - \{0\}, \cdot)$, $(\C - \{0\}, \cdot)$, $(S^1, \cdot)$ where $S^1 \subset \C$, $(\Z, +)$, $(\Z_p, +)$, $(Gl(n, \R), matrix ~multiplication)$ are Lie groups. For $G_1, G_2$ lie groups, $G_1 \times G_2$ is a lie group. Defn: $G$ = group, $X =$ set. {\it $G$ acts on $X$} (on the left) if $\exists \s: G \times X \rightarrow X$ such that \h 1.) $\s(e, x) = x ~~\forall x \in X$ \h 2.) $\s(g_1, \s(g_2, x)) = \s(g_1g_2, x)$ \u Notation: $\s(g, x) = gx$. \hfil \break Thus 1) $ex = x$; 2) $g_1(g_2x) = (g_1g_2)(x)$. \u If $G$ is a topological group and $X$ is a topological space, then we require $\s$ to be continuous. \u If $G$ is a Lie group and $X$ is a smooth manifold, then we require $\s$ to be smooth. Defn: The {\it orbit} of $x \in X$ = \hfil \break $G(x) = \{ y \in X ~|~ \exists g$ such that $y = gx\}$ Note: \hfil \break 1.) $x \in G(x)$ \hfil \break 2.) If $G(x) \cap G(y) \not= \emptyset$, then $G(x) = G(y)$ Thus we can use an action of $G$ to partition $X$ into disjoint subsets. Hence the action of $G$ on $X$ can be used to define an equivalence relation on $X$: $x \sim y$ iff $y \in G(x)$ iff $\exists g$ such that $y = gx$. \u \centerline{$X/G = X/\sim$.} If $X$ is a topological space, then $X/G = X/\sim$ is a topological space with the quotient topology. \u When is $X/G = X/\sim$ a manifold? Ex: $G= ({\bf Z}, +)$, $M = \R$, $\s(n, x) = n + x$. $M/G =$ Ex: $G= ({\bf Z} \times {\bf Z}, +)$, $M = \R^2$, \hfil \break $\s((n, m), (x,y)) = (n + x, m + y)$. $M/G =$ Ex: $G= ({\bf Z_2}, +)$, $M = S^n$, $\s(0, x) = x$, $\s(1, x) = -x$, . $M/G =$ \eject Defn: The action of $G$ on $X$ is {\it free } if $gx = x$ implies $g = e$. Thm 1.3.9: If $M$ is a smooth $n$-manifold, and $G$ is a finite Lie group acting freely on $M$, then $M/G$ is a smooth $n$-manifold. Also, $p: M \rightarrow M/G$ is smooth. Cor: Defn: $G$ is a {\it discrete group} if \h 0.) $G$ is a group. \h 1.) $G$ is countable \h 2.) $G$ has the discrete topology Note a discrete group is a Lie group. Defn: The action of $G$ on $M$ is {\it properly discontinuous} if $\forall x \in M$, $\exists U^{open}$ such that $x \in U$ and $U \cap gU = \emptyset ~~\forall g \in G$. Ex: $({\bf Z}, +)$ acting on $\R^1$ where $\s(n, x) = n + x$. Thm 1.3.2: $M$ smooth $n$-manifold, $G$ discrete group acting properly discontinuously on $M$ implies $M/G$ is a smooth $n$-manifold. Also, $p: M \rightarrow M/G$ is smooth. \end \end