\magnification 2000 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 9.8truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\Z{{\bf Z}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\s{\sigma} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{ \vskip -5pt } \def\h{\vskip -5pt \hskip 20pt} $M = S^n$ Ex: $G= ({\bf Z_2}, +)$, $M = S^n$, $\s(0, x) = x$, $\s(1, x) = -x$, . $M/G =$ Lens spaces, $L(p, q)$ $M = S^3 = \{(\x, \y) \in \C ~|~ ||(\x, \y)|| = 1 \}$ m), (x,y)) = (n + x, m + y)$. $M/G =$ \eject Defn: The action of $G$ on $X$ is {\it free } if $gx = x$ implies $g = e$. Thm 1.3.9: If $M$ is a smooth $n$-manifold, and $G$ is a finite Lie group acting freely on $M$, then $M/G$ is a smooth $n$-manifold. Also, $p: M \rightarrow M/G$ is smooth. Cor: Defn: $G$ is a {\it discrete group} if \h 0.) $G$ is a group. \h 1.) $G$ is countable \h 2.) $G$ has the discrete topology Note a discrete group is a Lie group. Defn: The action of $G$ on $M$ is {\it properly discontinuous} if $\forall x \in M$, $\exists U^{open}$ such that $x \in U$ and $U \cap gU = \emptyset ~~\forall g \in G$. Ex: $({\bf Z}, +)$ acting on $\R^1$ where $\s(n, x) = n + x$. Thm 1.3.2: $M$ smooth $n$-manifold, $G$ discrete group acting properly discontinuously on $M$ implies $M/G$ is a smooth $n$-manifold. Also, $p: M \rightarrow M/G$ is smooth. \end \end