\magnification 1800 \parskip 15pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 10.7truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{\psi} \def\f{\phi} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -5pt} Defn: Suppose $f: W \rightarrow N$ where $W \subset M$ and $N$ are smooth manifolds. $f$ is {\it smooth} if for all $p \in W$, $\exists$ charts $(\phi, U)$ and $(\p, V)$ and such that $p \in U$, $f(p) \in V$, $f(U) \subset V$ and $\p \circ f \circ \phi^{-1}$ is smooth. \vfill 0.) If $f: W \rightarrow N$ is smooth, then given charts $(\phi, U)$ and $(\p, V)$ such that $f(U) \subset V$, then $\p \circ f \circ \phi^{-1}$ is smooth. 1.) If $f: W \rightarrow N$ is smooth, then $f$ is continuous. 2.) If $f: W \rightarrow N$ is smooth, $V^{open} \subset W$, then $f: V \rightarrow N$ is smooth. 3.) $f: W \rightarrow N$, $W = \cup U_\alpha^{open}$, and $f: U_\alpha \rightarrow N$ smooth for all $\alpha$, then $f: W \rightarrow N$ is smooth. 4.) If $f, g$ smooth, $f \circ g$ is smooth. Defn: $f: M \rightarrow N$ is a {\it diffeomorphism} if $f$ is a homeomorphism and if $f$ and $f^{-1}$ are smooth. $M$ and $N$ are {\it diffeomorphic} if there exists a diffeomorphism $f: M \rightarrow N$. Prop 1.2.9: Let $M$ and $N$ be smooth manifolds, and let $\{U_{\alpha},\phi_{\alpha}\}$ be the atlas for $N$. \ Suppose $f:M\rightarrow N$ is a diffeomorphism. \ Then $\{f^{-1}(U_{\alpha}),\phi_{\alpha}\circ f\}$ is the atlas for $M$. \end