\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \input color \voffset -0.3truein \vsize 10truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\0{{\bf 0}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -5pt} Ex: $P^n(\R) = \R P^n$ = $\R P^n =( \R^n - \{\0\} )/ (\x \sim t\x)$ \hfil \break = $n$-dimensional real projective space is a smooth manifold. {\bf Claim: $\R P^n$ is 2nd countable.} We will use \hfil \break Lemma: If $\sim$ is {open} and if $X$ has a countable basis, then $X/\sim$ has a countable basis. [{We will define a map which takes $\y \in [\x]$ to $t\y \in [\x]$ }] Let $\phi_t: \R^n - \{\0\} \rightarrow \R^n - \{\0\} $, $\phi_t(\x) = t\x$. $\phi_t$ is invertible with inverse $\phi_t^{-1} = \phi_{1 \over t}$. Since $\phi_t$ and $\phi_t^{-1}$ are $C^1$ (as well as $C^{\infty}$), $\phi_t$ is a homeomorphism. Let $U$ be open in $\R^n - \{\0\} $. Then $\phi_t(U)$ is open in $\R^n - \{\0\} $. Thus $\pi^{-1}([U]) = \cup_{t \in \R} \phi_t(U)$ is open in $\R^n - \{\0\} $. Thus $[U]$ is open in $\R P^n$. Hence $\sim$ is open. Since $\R^n$ is 2nd countable, $\R P^n$ is 2nd countable. {\bf Claim $\R P^n$ is Hausdorff} We will use \hfil \break Lemma: Let $\sim$ be {open}. Then $\{ (x, y) ~|~ x \sim y \}$ is closed in $X \times X$ iff $X/\sim$ is Hausdorff. [We will show that $\{ (x, y) ~|~ x \sim y \} = f^{-1}(\{0\})$ for some continuous function $f$. $x \sim y$ implies $x_i = ty_i$. Thus ${x_i \over y_i} = {x_j \over y_j}$. Hence $x_iy_j - y_ix_j = 0$ for all $i, j$.] Let $f: \R^n - \{\0\} \times \R^n - \{\0\} \rightarrow \R$, \hfil \break $f(x_1, ..., x_n, y_1, ..., y_n) = \Sigma_{i \not= j} (x_iy_j - y_ix_j )^2$. $f$ is $C^1$ (all partials of $f$ exist and are continuous). Thus $f$ is continuous. Suppose $\y = t\x$, then \hfil \break $f(x_1, ..., x_n, y_1, ..., y_n) = \Sigma_{i \not= j} (x_itx_j - tx_ix_j )^2 = 0$. Suppose $f(x_1, ..., x_n, y_1, ..., y_n) = \Sigma_{i \not= j} (x_iy_j - y_ix_j )^2 = 0$. Then $x_iy_j - y_ix_j = 0$ for all $i, j$. Since $\x \not= \0$, there exists $i_0$ such that $x_{i_0} \not= 0$. Thus $y_j = {y_{i_0} \over x_{i_0}} x_j$ and $\y = {y_{i_0} \over x_{i_0}} \x$. Hence $\x \sim \y$. Hence $f^{-1}(\{0\}) = \{ (x, y) ~|~ x \sim y \} $. Since $f$ is continuous and $\{0\}$ is closed in $\R$, $\{ (x, y) ~|~ x \sim y \}$ is closed in $ \R^n - \{\0\} \times \R^n - \{\0\} $. Thus $ \R^n - \{\0\} /\sim$ is Hausdorff. \vskip 5pt \hrule We will show that $\R P^n$ is locally Euclidean by finding a (pre) atlas: Let $V_i = \{x \in \R^n - \{\0\} ~|~ x_i \not= 0 \} \subset \R^n - \{\0\}$ Let $F_i: V_i \rightarrow \R^n$, $F_i(x_1, ..., x_{n+1}) = ( {x_1 \over x_i}, {x_2 \over x_i}, ..., {x_{i-1} \over x_i}, {x_{i+1} \over x_i}, ..., {x_{n+1} \over x_i})$ \rightline{$= {1 \over x_i}(x_1, ..., \hat{x_i}, ..., x_{n+1})$} $F_i(t\x) = ( {tx_1 \over tx_i}, {tx_2 \over tx_i}, ..., {tx_{i-1} \over tx_i}, {tx_{i+1} \over tx_i}, ..., {tx_{n+1} \over tx_i})$ \rightline{$= ( {x_1 \over x_i}, {x_2 \over x_i}, ..., {x_{i-1} \over x_i}, {x_{i+1} \over x_i}, ..., {x_{n+1} \over x_i})$ $= F_i(\x)$. } Let $U_i = \pi(V_i)$ Then $\phi_i: U_i \rightarrow \R^n$, $\phi_i([\x]) = F_i(\x)$ is well-defined. \eject {\bf Claim: $(\phi_i, U_i)$ is a chart.} ~~~~~~~~~~~~{\bf Subclaim 1: $U_i$ is open in $\R P^n$.} $\pi_i^{-1}(U_i) = \pi_i^{-1}(\pi(V_i)) = V_i$ [by set theory]. Hence $U_i$ is open in $\R P^n$. ~~~~~~~~~~~~{\bf Subclaim 2: $\phi(U_i)$ is open in $\R^n$.} Claim: $\phi_i$ is onto. Let $(x_1, ..., x_n) \in \R^n$. $\phi_i([(x_1, ..., x_{i-1}, 1, x_i, .., x_n]) = (x_1, ..., x_n)$. Thus $\phi_i$ is onto. Since $\phi(U_i) = \R^n$ , $\phi(U_i)$ is open in $\R^n$. ~~~~~~~~~~~~{\bf Subclaim 3: $\phi_i$ is a homeomorphism.} Claim: $\phi_i$ is continuous. Let $V$ be open in $\R^n$. \hfil \break Since $F_i \in C^1$, $F_i^{-1}(V)$ is open in $\R^{n+1} - \{\0\}$. $\pi^{-1}\circ \phi_i^{-1}(V) = F_i^{-1}(V)$. Thus $\phi_i^{-1}(V) $ is open in $U_i$ and $\phi_i$ is continuous. Claim: $\phi_i$ is 1:1. If $\phi_i([\x])$ = $\phi_i([\y])$, then ${x_j \over x_i} = {y_j \over y_i}$ for all $j$. Thus $y_i = {y_i \over x_i}x_j$ and thus $\y = {y_i \over x_i}\x$. Thus $\phi_i$ is 1:1. Since $\phi_i$ is 1:1 and onto, $\phi_i^{-1}$ exists. \eject Claim: $\phi_i^{-1}: \R^n \rightarrow \R P^n$ is continuous. $\phi_i^{-1}(x_1, ..., x_n) = [(x_1, ..., x_{i-1}, 1, x_i, .., x_n)]$. Let $f_i: \R^n \rightarrow \R^{n+1}$, $f_i(\x) = (x_1, ..., x_{i-1}, 1, x_{i}, ..., x_n)$. $f_i$ is $C^1$ and hence continuous. $\pi \circ f(\x) = [(x_1, ..., x_{i-1}, 1, x_i, .., x_n)] = \phi_i^{-1}(x_1, ..., x_n)$. Since $\pi$ and $f$ are continuous, $\phi_i^{-1}: \R^n \rightarrow \R P^n$ is continuous. Thus $(\phi_i, U_i)$ is a chart. {\bf Claim: $\{(\phi_i, U_i) ~|~ i = 1, ..., n+1\}$ is a (pre) atlas for $\R P^n$.} $\R^{n +1} - \{\0\} = \cup_{i=1}^{n+1} V_i$. Thus $\R P^n = \cup_{i=1}^{n+1} U_i$. {\bf Claim: $\phi_j \phi_i^{-1}: \phi_i(U_i \cap U_j) \rightarrow \phi_i(U_i \cap U_j)$ is smooth.} Suppose $j < i$. $\phi_j(\phi_i^{-1}(x_1, ..., x_n)) = \phi_j([x_1, ..., x_{i-1}, 1, x_{i}, ..., x_n])$ \rightline{$ = ({x_1 \over x_j} , ..., {x_{i-1} \over x_j} , {1 \over x_j} , {x_{i} \over x_j} , ..., {x_n \over x_j} )$} Since all the components of $\phi_j \phi_i^{-1}$ are polynomials, $\phi_j \phi_i^{-1}$ is smooth. Similarly $\phi_j \phi_i^{-1}$ is smooth when $j > i$. Thus $\{(\phi_i, U_i) ~|~ i = 1, ..., n+1\}$ is a (pre) atlas for $\R P^n$, and $\R P^n$ is a smooth manifold. \end ${\partial \over x_k} ({x_{m} \over x_j}) = \cases{0 & $k \not= m, j$ \cr {1 \over x_j} & $ k = m$ \cr {-x_{m} \over x_j^2} & $m = j$}$ \hfill ${\partial \over x_k} ({1 \over x_j}) = \cases{0 & $k \not= j$ \cr {-1 \over x_j^2} & $m = j$}$ Since all partials exist and are continuous, $\phi_j(\phi_i^{-1}$ is C^1