\magnification 1800 \parskip 20pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.3truein \vsize 10.7truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -5pt} Let $\sim$ be an equivalence relation on $X$. Let $\pi: X \rightarrow X/\sim$, $\pi(x) = [x] = \{ y~|~ y \sim x \}$ $[A] = \cup_{a \in A} [a]$ Defn: $\sim$ is {\it open} if $U^{open} \subset X$ implies $[U]$ open in $X/\sim$. Lemma: $\sim$ is { open} iff $\pi$ is an open mapping. Lemma: If $\sim$ is {open} and if $X$ has a countable basis, then $X/\sim$ has a countable basis. Lemma: Let $\sim$ be {open}. Then $\{ (x, y) ~|~ x \sim y \}$ is closed in $X \times X$ iff $X/\sim$ is Hausdorff. Ex: $P^n(\R) = RP^n$ = n-dimensional real projective space is a smooth manifold. $RP^n = S^n /(x \sim -x) = (\R^n - \{0\})/ (\x \sim t\x)$ \end