\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\r{{\bf r}} \def\c{{\bf c}} \def\y{{\bf y}} \def\e{{\bf e}} \def\a{{\bf a}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{{\bf p}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -8pt} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} 2.7 \hfil \break Let $A_{m \times n} = \left(\matrix{\r_1 \cr \r_2 \cr ... \cr \r_m }\right)$ $= \left(\matrix{\c_1 & \c_2 & ... & \c_n }\right)$ Rank of $A$ = $dim(span\{\r_1, ..., \r_m\}) = dim(span\{\c_1, ..., \c_m\})$ \rightline{= maximum order of any nonvanishing minor determinant.} Ex: $\left(\matrix{1 & 2 & 3 & 4 \cr 0 & 0 & 0 & 0 \cr 0 & 0 & 5 & 6 }\right)$ $\sim \left(\matrix{1 & 3 & 2 & 4 \cr 0 & 0 & 0 & 0 \cr 0 & 5 & 0 & 6 }\right)$ Let $F: U \subset \R^n \rightarrow \R^m \in C^1$. Rank of $F$ at $x$ = rank of $DF(x)$ $F$ has rank $k$ if $F$ has rank $k$ at each $x$. $Det: M^{n \times m} \rightarrow \R$ is a continuous function. Suppose rank $DF(a) = k$ implies there exists $V$ open such that $a \in V$ and $DF(x) \geq k$ for all $x \in V$ Ex: $F(x_1, x_2) = (x_1x_2 + 5, x_1 + x_2 - 3)$ $DF = \left(\matrix{x_2 & x_1 \cr 1 & 1 }\right)$ \eject Rank Theorem: Suppose $A_0 \subset \R^n$, $B_0 \subset \R^m$, $F: A_0 \rightarrow B_0 \in C^1$ $a \in A_0, b \in B_0$. Suppose rank F = $k$. Then there exists $A^{open} \subset A_0$ such that $a \in A$ and $B^{open} \subset B_0$ such that $b \in B$ and $G, H$, $C^r$ diffeomorphisms such that $G: A \rightarrow U^{open} \subset \R^n$, $H: B \rightarrow V^{open} \subset \R^m$ and $$H \circ F \circ G^{-1} (x_1, ..., x_n) = (x_1, ..., x_k, 0, ..., 0)$$ \end