\magnification 1200 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \voffset -0.5truein \vsize 10truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\a{{\bf a}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -8pt} HW 3: Let $F: \R \rightarrow \R^2$, $F(x) = (2,3)x$ \hfil \break $G: \R^2 \rightarrow \R^3$, $G(x, y) = (xy, x^2, x + 2y + 5)$ \hfil \break $H: \R \rightarrow \R^2$, $H(x) = (x^2, x^3)$ \hfil \break $k: \R^2 \rightarrow \R$, $k(x, y) = x^8 + 5xy$. 1.) Use the chain rule to calculate $D( G \circ F)_2$ 2.) Use the product rule to calculate $D(FH)_2$ 3.) Let $\a = (3, 4)$. Let $X_a = 9E_{1\a} - E_{2\a}$. Then $X_a^*(k) =$ $F$ is a $C^r$-{\it diffeomorphism} if (1) $F$ is a homeomorphism (2) $F, F^{-1} \in C^r$ $F$ is a {\it diffeomorphism} if $F$ is a $C^\infty$-diffeomorphism. 4.) Give an example of a homeomorphism which is analytic (ie $C^\infty$ and near $a$, $f(x) = f(a) + f'(a)(x-a) + {f''(a) \over 2!} (x - a)^2 + ...$ , its Taylor series) which is not a diffeomorphism. 5.) Suppose $F'(\x) = {\bf 0}$ for all $\x \in U^{open} \subset \R^n$. Show $F$ cannot be a homeomorphism. What can you say about $F$ (hint: MVT). 6.) Suppose $f: R \rightarrow R$, $f'(x) \not= 0$ for all $x \in U$. Show that the derivative of $f^{-1}$ exists for all $y \in f(U)$ 7.) Suppose $F$ is a $C^1$-diffeomorphism. Show that $DF_x$ is nonsingular (ie $det(DF_x) \not= 0) \forall x \in dom(F)$ 8.) Ex 1: Show $F: \R^n \rightarrow \R^n$, $F(\x) = \x + \a$ is a diffeomorphism. 9.) Ex 2: Determine when $F: \R^n \rightarrow \R^m$, $F(\x) = Ax$, where $A$ is an $m \times n$ matrix, is a diffeomorphism. $DF_x$ = . Note that if $F$ and $G$ are diffeomorphism, then $F \circ G$ is a diffeomorphism (when $F \circ G$ is defined). Thm 6.5 (Contracting mapping theorem): Let $M$ be a complete metric space and let $T: M \rightarrow M$. Suppose there exists a constant $\lambda \in [0, 1)$ such that for all $ x, y \in M$, $d(T(x), T(y)) \leq \lambda d(x, y)$. Then $T$ has a unique fixed point. Proof: See class notes (Recall $T^n(x_0)$ is a Cauchy sequence. Since $M$ be a complete metric space, $T^n(x_0)$ converges, say to $a$. Then $d(T(a), a) = 0$). Thm 6.4 (Inverse Function Theorem): Suppose $F: W^{open} \subset \R^n \rightarrow R^n \in C^r$. Suppose for $a \in W$, $det(DF_a) \not=0$. Then there exists $U$ such that $a \in U^{open}$, $V = F(U)$ is open, and $F: U \rightarrow V$ is a $C^r$-diffeomorphism. Moreover, for $x \in U$ and $y = F(x)$, $DF^{-1}_y = (DF_x)^{-1}$ \end