HW 3:

Let \(F : \mathbb{R} \to \mathbb{R}^2, F(x) = (2,3)x \)
\(G : \mathbb{R}^2 \to \mathbb{R}^3, G(x,y) = (xy, x^2, x + 2y + 5) \)
\(H : \mathbb{R} \to \mathbb{R}^2, H(x) = (x^2, x^3) \)
\(k : \mathbb{R}^2 \to \mathbb{R}, k(x,y) = x^8 + 5xy. \)

1. Use the chain rule to calculate \(D(G \circ F)_2 \)

2. Use the product rule to calculate \(D(FH)_2 \)

3. Let \(\mathbf{a} = (3,4) \). Let \(X_{\mathbf{a}} = 9E_{1\mathbf{a}} - E_{2\mathbf{a}} \). Then \(X_{\mathbf{a}}(k) = \)

 \(F \) is a \(C^r \)-diffeomorphism if

 (1) \(F \) is a homeomorphism

 (2) \(F, F^{-1} \in C^r \)

 \(F \) is a diffeomorphism if \(F \) is a \(C^\infty \)-diffeomorphism.

4. Give an example of a homeomorphism which is analytic (ie \(C^\infty \) and near \(\mathbf{a} \), \(f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots \), its Taylor series) which is not a diffeomorphism.

5. Suppose \(F'(\mathbf{x}) = \mathbf{0} \) for all \(\mathbf{x} \in U^{open} \subset \mathbb{R}^n \). Show \(F \) cannot be a homeomorphism. What can you say about \(F \) (hint: MVT).

6. Suppose \(f : \mathbb{R} \to \mathbb{R}, f'(x) \neq 0 \) for all \(x \in U \). Show that the derivative of \(f^{-1} \) exists for all \(y \in f(U) \)

7. Suppose \(F \) is a \(C^1 \)-diffeomorphism. Show that \(DF_x \) is nonsingular (ie \(\det(DF_x) \neq 0) \forall x \in \text{dom}(F) \)

8. Ex 1: Show \(F : \mathbb{R}^n \to \mathbb{R}^n, F(\mathbf{x}) = \mathbf{x} + \mathbf{a} \) is a diffeomorphism.

9. Ex 2: Determine when \(F : \mathbb{R}^n \to \mathbb{R}^m, F(\mathbf{x}) = A\mathbf{x}, \) where \(A \) is an \(m \times n \) matrix, is a diffeomorphism. \(DF_x = \).

Note that if \(F \) and \(G \) are diffeomorphism, then \(F \circ G \) is a diffeomorphism (when \(F \circ G \) is defined).

Thm 6.5 (Contracting mapping theorem): Let \(M \) be a complete metric space and let \(T : M \to M \).
Suppose there exists a constant \(\lambda \in [0,1) \) such that for all \(x, y \in M, d(T(x), T(y)) \leq \lambda d(x,y) \).
Then \(T \) has a unique fixed point.

Proof: See class notes (Recall \(T^n(x_0) \) is a Cauchy sequence. Since \(M \) be a complete metric space, \(T^n(x_0) \) converges, say to \(a \). Then \(d(T(a), a) = 0) \).

Thm 6.4 (Inverse Function Theorem): Suppose \(F : W^{open} \subset \mathbb{R}^n \to \mathbb{R}^n \in C^r \). Suppose for \(a \in W, \)
\(\det(DF_a) \neq 0. \) Then there exists \(U \) such that \(a \in U^{open}, V = F(U) \) is open, and \(F : U \to V \) is a \(C^r \)-diffeomorphism. Moreover, for \(x \in U \) and \(y = F(x), DF_y^{-1} = (DF_x)^{-1} \)