\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\a{{\bf a}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\p{{\bf p}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -8pt} \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} 2.5 Let $U \subset R^n$ Defn: A {\it vector field} is a function, ${\cal V}: U \rightarrow \cup_{\a \in U}T_\a(\R^n)$, such that ${\cal V}: (\a) \in T_\a(\R^n)$ Defn: A vector field is {\it smooth} if its components relative to the canonical basis $\{E_{i\a} ~|~ i = 1, ..., n \}$ are smooth. Ex: ${\cal V}: \R^2 \rightarrow \cup_{\a \in U}T_\a(\R^2)$, ${\cal V}(x, y) = (2x, -y) = 2x E_{1\a} - y E_{2\a}$. Defn: A field of frames is a set of vector fields $\{ {\cal V}_1, ..., {\cal V}_2 \}$ such that $\{ {\cal V}_1(\a), ..., {\cal V}_2(\a) \}$ forms a basis for $T_\a(\R^n)$ for all $\a$. Ex: $\{ E_{1\a}, ..., E_{n\a}\}$ on $\R^n$. Ex: $\{ x E_{1\a} + y E_{2\a}, y E_{1\a} - x E_{2\a} \}$ on $\R^n - \{{\bf 0}\}$. \vskip 10pt \hrule Let $ {\cal V} = \S \alpha_i (\a) E_{i\a}$ be a smooth vector field on $U$. $ {\cal V}: C^{\infty} \rightarrow C^{\infty}$ $ {\cal V}(f) = \S \alpha_i (\a) {\partial f \over \partial x_i} (\a)$ is a derivation. \vskip 10pt %%\hrule \eject Thm 5.1: Let $F^{closed} \subset \R^n$, $K^{compact} \subset \R^n$, $F \cap K = \emptyset$. There there is a $C^\infty$ function $\sigma: \R^n \rightarrow [0, 1]$ such that $\sigma(K) = \{1\}$, $\sigma(F) = \{0\}$ Show that $h(t) = \cases{0 & $t \leq 0$ \cr e^{-1 \over t} & $t > 0$}$ is $C^\infty$, (but not $C^\omega$). Let $\overline{g} (x) = { h(\epsilon^2 - ||\x||^2) \over h(\epsilon^2 - ||\x||^2) + h(||\x||^2 - { \epsilon^2 \over 4} )}$ $\overline{g}(\x) = \cases{ 1 & $0 \leq ||x || \leq {\epsilon \over 2}$ \cr positive & ${\epsilon \over 2} \leq ||x || < {\epsilon }$ \cr 0 & $||x || \geq \epsilon$ }$ Let $g(\x) = \overline{g}(\x - \a )$ $$\sigma(\x) = 1 - \Pi_{i = 1}^k (1 - g_i)$$ where $K \subset \cup_{i=1}^k B_{{\ep \over 2}}(\a_i)$ and $B_{\ep}(\a_i) \subset \R^n - F$. %%If there is time, do problem 1 in 2.5 in discussion section \end