\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\a{{\bf a}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -8pt} $T_\a(\R^n) = \{(\a,\x ) ~|~ \x \in \R^n \}$ $\phi(\a\x) = \x- \a$ canonical basis $\{E_{i\a} = \phi^{-1}(e_i) ~|~ i = 1, ..., n \}$ Let $C^\infty(a) = \{ f: X \subset \R^n \rightarrow \R \in C^\infty ~|~ a \in dom f \}$ $f \sim g$ if $\exists U^{open}$ s.t. $\a \in U$ and $f(x) = g(x) \forall x \in U$. $f_i: U_i \rightarrow \R \in C^\infty(a)$ implies $f_1 + f_2: U_1 \cap U_2 \rightarrow \R \in C^\infty(a)$ and $\alpha f_i: U_i \rightarrow \R \in C^\infty(a)$ Thus $C^\infty(a)$ is an algebra over $\R$ Let $X_\a = \S \xi_i E_{i\a}$ $X_\a^*: C^\infty (\a) \rightarrow \R$ $X_\a^*(f) = \S \xi_i {\partial f \over \partial x_i}_\a$ Let $x_j: \R^n \rightarrow \R$, $x_j(\x) = x_j$ $X_\a^*(x_j) = \S \xi_i {\partial x_j \over \partial x_i}_\a = \xi_i$ $X_\a^*$ is linear and satisfies the Leibniz rule. Let ${\cal D}(a) = \{ D: C^\infty (\a) \rightarrow \R ~|~ D$ is linear and satisfies the Leibniz rule $\}$ Define $(\alpha D_1 + \beta D_2)(f) = \alpha [D_1(f)] + \beta [D_2(f)]$ ${\cal D}(a)$ is closed under addition and scalar multiplication and hence is a vector space over $\R$ Let $j: T_\a(\R^n) \rightarrow {\cal D}(a)$, $j(X_\a) = X_\a^*$ Claim: $j$ is an isomorphism. Let $X_\a = \S \xi_i E_{i\a}$ and $Z_\a = \S \zeta_i E_{i\a}$ $j$ is a homomorphism. $j$ is 1-1: If $j(X_\a) = j(Z_\a)$, then $X_\a^*(x_j) = \S \xi_i {\partial x_j \over \partial x_i}_\a = \xi_i = \zeta_i = Z_\a^*(x_j)$ $j$ is onto: Let $D$ be a derivation. Suppose $f(\x) = 1$. Then $Df = 0$ Suppose $g(\x) = c$. Then $Dg = D(cf) = cDf = 0$ Let $h_i(\x) = x_i$. Let $\xi_i = Dh_i$. Then $D = X_\a^*$ where $X_\a = \S \xi_i E_{i\a}$ (proof: long calculation, see Boothby). \vskip 10pt \hrule \vskip 10pt Note since $X_\a^*(f) = \S \xi_i {\partial f \over \partial x_i}_\a$, $j(E_{i\a}) = $ \end \hrule 2.5 Let $U \subset R^n$ Let $E_{i\p} = \phi^{-1}_\p(\e_i)$ where $\phi_\p: T_\p(\R^n) \rightarrow \R^n$, $\phi_p(\p\x) = \x - \p$ Defn: A {\it vector field} is a function, $f: U \rightarrow T(\R^n)$, such that $f(\p) \in T_\p(\R^n)$ Suppose Defn: A vector field is {\it smooth} if its components relative to the canonical basis are \end Math 28 Let $f: X \subset \R^k \rightarrow \R^m$ Graph of $f = \{ (\x, f(\x) ~|~ \x \in X \} \subset \R^k \times \R^m$ \end