\[T_a(\mathbb{R}^n) = \{(a, x) \mid x \in \mathbb{R}^n\} \]

\[\phi(ax) = x - a \]

canonical basis \(\{ E_{ia} = \phi^{-1}(e_i) \mid i = 1, \ldots, n\} \)

Let \(C^\infty(a) = \{ f : X \subset \mathbb{R}^n \to \mathbb{R} \in C^\infty \mid a \in \text{dom} f \} \)

\(f \sim g \) if \(\exists U^{\text{open}} \) s.t. \(a \in U \) and \(f(x) = g(x) \forall x \in U \).

\(f_i : U_i \to \mathbb{R} \in C^\infty(a) \) implies \(f_1 + f_2 : U_1 \cap U_2 \to \mathbb{R} \in C^\infty(a) \)

and \(\alpha f_i : U_i \to \mathbb{R} \in C^\infty(a) \)

Thus \(C^\infty(a) \) is an algebra over \(\mathbb{R} \)

Let \(X_a = \sum_{i=1}^{n} \xi_i E_{ia} \)

\(X^*_a : C^\infty(a) \to \mathbb{R} \)

\(X^*_a(f) = \sum_{i=1}^{n} \xi_i \frac{\partial f}{\partial x_{ia}} \)

Let \(x_j : \mathbb{R}^n \to \mathbb{R} \), \(x_j(x) = x_j \)

\(X^*_a(x_j) = \sum_{i=1}^{n} \xi_i \frac{\partial x_j}{\partial x_{ia}} = \xi_i \)

\(X^*_a \) is linear and satisfies the Leibniz rule.

Let \(\mathcal{D}(a) = \{ D : C^\infty(a) \to \mathbb{R} \mid D \) is linear and satisfies the Leibniz rule \} \)

Define \((\alpha D_1 + \beta D_2)(f) = \alpha[D_1(f)] + \beta[D_2(f)] \)
$\mathcal{D}(a)$ is closed under addition and scalar multiplication and hence is a vector space over \mathbb{R}

Let $j : T_a(\mathbb{R}^n) \to \mathcal{D}(a)$, $j(X_a) = X_a^*$

Claim: j is an isomorphism.

Let $X_a = \sum_{i=1}^{n} \xi_i E_i a$ and $Z_a = \sum_{i=1}^{n} \zeta_i E_i a$

j is a homomorphism.

j is 1-1:

If $j(X_a) = j(Z_a)$, then $X_a^*(x_j) = \sum_{i=1}^{n} \xi_i \frac{\partial x_i}{\partial x_j} a = \xi_i = \zeta_i = Z_a^*(x_j)$

j is onto:

Let D be a derivation.

Suppose $f(x) = 1$. Then $Df = 0$

Suppose $g(x) = c$. Then $Dg = D(cf) = cDf = 0$

Let $h_i(x) = x_i$. Let $\xi_i = Dh_i$. Then $D = X_a^*$ where $X_a = \sum_{i=1}^{n} \xi_i E_i a$ (proof: long calculation, see Boothby).

Note since $X_a^*(f) = \sum_{i=1}^{n} \xi_i \frac{\partial f}{\partial x_i} a$, $j(E_i a) =$