\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\p{{\bf p}} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\a{{\bf a}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -8pt} Method 1: $T_\a(\R^n) = \{(\a,\x ) ~|~ \x \in \R^n \}$ $\phi(\a\x) = \x- \a$ canonical basis $\{\phi^{-1}(e_i) ~|~ i = 1, ..., n \}$ Method 2: Let $x(t): \R \rightarrow \R^n$, a $C^1$ curve such that $x(0) = \a$ $x(t) \sim y(t)$ if $x_i'(t) = y_i'(t)$ for $t \in (-\epsilon, \epsilon) $ Let $f([x(t)]) = \x'(0) = (x_1'(0), ..., x_n'(0))$ Let $T_\a(\R^n) = \{ [x(t)] ~|~ x \in C^1, x(0) = \a \}$ $[x(t)] + [y(t)] = f^{-1}(x'(0) + y'(0))$ $\alpha[x(t)] = f^{-1}(\alpha x'(0))$ \vskip 10pt \hrule Let $f: \R^n \rightarrow \R$ and let ${\bf v} \in R^n$ such that $||{\bf v}|| = 1$ The directional derivative of $f$ at $\a$ in the direction of ${\bf v}$ is $D_{\bf v} f(\a) = lim_{h \rightarrow 0} {f(\a + h{\bf v}) - f(\a) \over h}$ = $D[f(\a + t{\bf v})]_0 = Df_\a {\bf v} =Df_\a \cdot {\bf v} = ( {\partial f \over \partial x_1}, ..., {\partial f \over \partial x_n})|_a \cdot {\bf v} = $ \end 2.5 Let $U \subset R^n$ Let $E_{i\p} = \phi^{-1}_\p(\e_i)$ where $\phi_\p: T_\p(\R^n) \rightarrow \R^n$, $\phi_p(\p\x) = $ Defn: A {\it vector field} is a function, $f: U \rightarrow T(\R^n)$, such that $f(\p) \in T_\p(\$ Suppose Defn: A vector field is {\it smooth} if its components relative to the canonical basis are $$ \end