\magnification 1800 \parskip 12pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\N{{\bf N}} \def\S{\Sigma_{i=1}^n} \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\a{{\bf a}} \def\b{{\bf b}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -5pt} Thm 2.3 (Chain rule): Suppose $U \subset R^m$ is open and $f: U \rightarrow V \subset \R^m$, $g: V \rightarrow \R^p$. Let $h = g \circ f$. Suppose $f$ is differentiable at $a \in U$ and $g$ is differentiable at $f(a) \in V$. Then $h$ is differentiable at $a \in U$ and $D(h)_a = D(G)_{f(a)} D(f)_a$. Let $R_h(\x, \a) = {g( f({\bf x}) ) - g(f({\bf a})) - D(g)_{f(a)} D(f)_a (\x - \a) \over ||{\bf x} - {\bf a}||}$$ Let $\y = f(\x), \b = f(\a)$ $R_g(\y, \b) = {g(\y) - g(\b) - D(g)_{\b} (\y - \b) \over ||{\bf y} - {\bf b}||} $ where $lim_{{\bf x} \rightarrow {\bf a}} R_g(\y, \b) = 0$ $R_f(\x, \a) = {f({\bf x}) - f({\bf a}) - D(f)_a (\x - \a) \over ||{\bf x} - {\bf a}||}$ where $lim_{{\bf x} \rightarrow {\bf a}} R_f(\x, \a) = 0$ $\y - \b = f({\bf x}) - f({\bf a}) = D(f)_a (\x - \a) + ||{\bf x} - {\bf a}||R_f(\x, \a)$ $R_g(\y, \b) = {g(f({\bf x}) ) - g(f({\bf a}) ) - D(g)_{\b} [ D(f)_a (\x - \a) + ||{\bf x} - {\bf a}||R_f(\x, \a) ] \over ||{\bf y} - {\bf b}||} $ ${||{\bf y} - {\bf b}||R_g(\y, \b) \over ||{\bf x} - {\bf a}||} = {g(f({\bf x}) ) - g(f({\bf a}) ) - D(g)_{\b} D(f)_a (\x - \a) - D(g)_{\b} ||{\bf x} - {\bf a}||R_f(\x, \a) \over ||{\bf x} - {\bf a}||} $ ${||{\bf y} - {\bf b}||R_g(\y, \b) + D(g)_{\b} ||{\bf x} - {\bf a}||R_f(\x, \a) \over ||{\bf x} - {\bf a}||} = {g(f({\bf x}) ) - g(f({\bf a}) ) - D(g)_{\b} D(f)_a (\x - \a) \over ||{\bf x} - {\bf a}||} $ $R_h(\x, \a) = {||{\bf y} - {\bf b}||R_g(\y, \b) + D(g)_{\b} ||{\bf x} - {\bf a}||R_f(\x, \a) \over ||{\bf x} - {\bf a}||} $ $R_h(\x, \a) = {||{f(\x)} - {f(\a)}||R_g(\y, \b) \over ||{\bf x} - {\bf a}||} + D(g)_{\b}R_f(\x, \a) $ $R_h(\x, \a) = {|| D(f)_a (\x - \a) + ||{\bf x} - {\bf a}||R_f(\x, \a)||R_g(\y, \b) \over ||{\bf x} - {\bf a}||} + D(g)_{\b}R_f(\x, \a) $ \eject Cor 2.4: If $f, g \in C^r$ on $U, V$ respectively, then $h = g \circ f \in \C^r$. Proof by induction: r = 1: Suppose $f, g \in C^1$ on $U, V$ respectively. Then ${\partial f \over \partial x_i}$ exists and is continuous on $U$ Then ${\partial g \over \partial x_i}$ exists and is continuous on $V$. By Thm 1.3, $f$, $g$ are differentiable on $U, V$ respectively. Hence by Thm 1.1, $f$ is continuous. By Thm 2.3 $h = g \circ f$ is differentiable. Thus by Thm 1.1, ${\partial h \over \partial x_i}$ exist. By Thm 2.3 it's Jacobian is $D(h)_x = D(g)_{f(x)} D(f)_x$. Since ${\partial f_i \over \partial x_j}$ are continuous on $U$ for all $i, j$, each entry of \break $D(f)_x = ({\partial f_i \over \partial x_j} )$ is continuous Since ${\partial g_i \over \partial x_j}$ are continuous on $V$ for all $i, j$ and $f$ is continuous, each entry of $D(g)_{f(x)} = ({\partial g_i \over \partial x_j}|_{f(x)} )$ is continuous. Since the sums and products of continuous functions are continuous, each entry of $D(h)_a = D(g)_{f(a)} D(f)_a$ is continuous. \end