HW 2.1: 2, 8 (due Friday, next week)

\(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable at \(a \) if

\[
\lim_{x \to a} \frac{f(x) - f(a) - T(x - a)}{||x - a||} = 0
\]

\[
\lim_{x \to a} \frac{f(x) - f(a) - \sum b_i(x_i - a_i)}{||x - a||} = 0
\]

\(y = f(a) + \sum b_i(x_i - a_i) \) approximates \(y = f(x) \)

\[
f(x) = f(a) + T(x - a) + ||x - a||r(x, a)
\]

where \(\lim_{x \to a} r(x, a) = 0 \)

Thm 1.1: If \(f \) is differentiable at \(a \), then

1.) \(f \) is continuous at \(a \).

2.) All partial derivatives exist at \(a \).

3.) \(b_i = \frac{\partial f}{\partial x_i} \) at \(a \)

Proof: 1.) \(\lim_{x \to a} f(x) = \lim_{x \to a} f(a) + T(x - a) + ||x - a||r(x, a) = f(a) \)

2,3.) \(\frac{\partial f}{\partial x_j}(a) = \lim_{h \to 0} \frac{f(a + h\mathbf{e}_j) - f(a)}{h} \)

\[
= \lim_{h \to 0} \frac{f(a) + T(a + h\mathbf{e}_j - a) + ||a + h\mathbf{e}_j - a||r(a + h\mathbf{e}_j, a) - f(a)}{h}
\]

\[
= \lim_{h \to 0} \frac{T(h\mathbf{e}_j) + ||r(a + h\mathbf{e}_j, a)||}{h} = \lim_{h \to 0} \frac{hT(e_j) + ||r(a + h\mathbf{e}_j, a)||}{h}
\]

Thm 1.3: If \(\frac{\partial f}{\partial x_j} \) exist for all \(j \) in a nbhd of \(a \) and if they are continuous at \(a \), then \(f \) is differentiable at \(a \).

Defn: Let \(V \) be a nonempty open subset of \(\mathbb{R}^n \), \(f : V \to \mathbb{R}^m \), \(p \in \mathbb{N} \).

i.) \(f \) is \(C^p \) on \(V \) is each partial derivative of order \(k \leq p \) exists and is continuous on \(V \).

ii.) \(f \) is \(C^\infty \) on \(V \) if \(f \) is \(C^p \) on \(V \) for all \(p \in \mathbb{N} \) (\(f \) is smooth).

Chain rule 1: Suppose \(f : (a, b) \to \mathbb{R}^n \), \(g : \mathbb{R}^n \to \mathbb{R} \), then

\[
\frac{d}{dt}(g \circ f)_{t_0} = D(G)_{f(t_0)}D(f)_{t_0} = (b_1, \ldots, b_n) \begin{pmatrix} f'_1(t_0) \\ f'_2(t_0) \\ \vdots \\ f'_n(t_0) \end{pmatrix}
\]

\[
= \sum_{i=1}^n \left(\frac{\partial g}{\partial x_i} \right)_{f(t_0)} \left(\frac{df}{dt} \right)_{t_0}
\]

Ex: \(f(t) = (t^2, \sin(t)) \), \(D(f) = \begin{pmatrix} 2t \\ \cos(t) \end{pmatrix} \)

\(g(x, y) = x + y^3 \), \(D(g) = (1, 3y^2) \)

\((g \circ f)(t) = g(t^2, \sin(t)) = t^2 + \sin^3(t) \)

\((g \circ f)'(t) = 2t_0 + 3\sin^2(t_0)\cos(t_0) \)

\(D(g)_{f(t_0)}D(f)_{t_0} = (1, 3\sin^2(t_0)) \begin{pmatrix} 2t_0 \\ \cos(t_0) \end{pmatrix} \),
Defn: U is starlike with respect to a if $x \in U$ implies $ax \subset U$

Thm 1.5 (Mean Value Theorem) Let g by a differentiable function on an open set $U \subset \mathbb{R}^n$. Let $a \in U$ and suppose U is starlike with respect to a. Then given $x \in U$, there exists $c \in \mathbb{R}$, $0 < t_0 < 1$ such that

$$g(x) - g(a) = \sum_{i=1}^{n} \left(\frac{\partial g}{\partial x_i} \right) p(x_i - a_i)$$

where $p = a + t_0(x - a)$

Cor 1.6: If $|\frac{\partial g}{\partial x_i}| < K$ on U for all i, then for all $x \in U$,

$$|g(x) - g(a)| < K \sqrt{n}||x - a||$$

Cor 1.7 If $f \in C^r$ on U, then $\frac{\partial^k g}{\partial x_{i_1}\partial x_{i_2}...\partial x_{i_k}} = \frac{\partial^k g}{\partial x_{j_1}\partial x_{j_2}...\partial x_{j_k}}$ where $(j_1, j_2, ..., j_k)$ is a permutation of $(i_1, i_2, ..., i_k)$

2.2: $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$

Let $\pi_i: \mathbb{R}^m \rightarrow \mathbb{R}, \pi_i(x) = x_i$

$f = (f_1, ..., f_m)$ where $f_i = \pi_i \circ f$

f continuous iff f_i continuous for all i

$f \in C^r$ iff $f_i \in C^r$ for all i

$f \in C^\infty$ iff $f_i \in C^\infty$ for all i

Defn: The Jacobian matrix of f at a is

$$\left[\frac{\partial f_i}{\partial x_j} (a) \right]_{m \times n} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} (a) & ... & \frac{\partial f_1}{\partial x_n} (a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} (a) & ... & \frac{\partial f_m}{\partial x_n} (a) \end{bmatrix}$$

2.1 Let V be an open subset of \mathbb{R}^n, $a \in V$, $f: V \rightarrow \mathbb{R}^m$. Then f is differentiable at a if and only if there is a matrix T and a function $\epsilon : \mathbb{R}^n \rightarrow \mathbb{R}^m$ such that $\lim_{h \rightarrow 0} \epsilon(h) = 0$ and

$$f(a + h) - f(a) = T(h) + \|h\| \epsilon(h)$$

Or equivalently, there exists an m-tuple, $R(x, a) = (r_1(x, a), r_2(x, a), ..., r_m(x, a))$ such that $\lim_{x \rightarrow a} \|R(x, a)\| = 0$ and

$$f(x) = f(a) + T(x - a) + \|x - a\| R(x, a)$$
Thm 2.2: Let f be a differentiable function on an open set $U \subset \mathbb{R}^n$. Let $a \in U$ and suppose U is starlike with respect to a. If $\left| \frac{\partial f_i}{\partial x_i} \right| < K$ on U for all i, j, then for all $x \in U$,

$$||f(x) - f(a)|| < K \sqrt{nm} ||x - a||$$

Proof: $||f(x) - f(a)|| = \sqrt{\sum_{i=1}^{m} (f_i(x) - f_i(a))^2}$

$$< \sqrt{\sum_{i=1}^{m} (K \sqrt{n} ||x - a||)^2} = \sqrt{m (K \sqrt{n} ||x - a||)^2} = K \sqrt{nm} ||x - a||$$

Thm 2.3 (Chain rule): Suppose $U \subset R^m$ is open and $f : U \to V \subset \mathbb{R}^m$, $g : V \to \mathbb{R}^p$. Let $h = g \circ f$. Suppose f is differentiable at $a \in U$ and g is differentiable at $f(a) \in V$. Then h is differentiable at $a \in U$ and $D(h)_a = D(G)_{f(a)} D(f)_a$.

Cor 2.4: If $f, g \in C^r$ on U, V respectively, then $h = g \circ f \in C^r$.

5