\magnification 1800 \parskip 10pt \parindent 0pt \hoffset -0.3truein \hsize 7truein \def\R{{\bf R}} \def\C{{\bf C}} \def\x{{\bf x}} \def\y{{\bf y}} \def\e{{\bf e}} \def\i{{\bf i}} \def\j{{\bf j}} \def\k{{\bf k}} \def\ep{\epsilon} \def\f{\vskip 10pt} \def\u{\vskip -8pt} Defn: Let $f: \R^n \rightarrow \R^m$. Define $g_{ij}: \R^1 \rightarrow \R^1$, \hfil \break $g_{ij}(t) = f_i(x_1, ..., x_{j-1}, t, x_{j+1}, ..., x_n)$. If $g$ is differentiable at $a$, then the partial derivative of $f_i$ is defined by ${\partial f_i \over \partial x_j}({\bf a}) = $ $lim_{h \rightarrow 0} {f_i(a_1, ..., a_{j-1}, a_j + h, a_{j+1}, ..., a_n) - f_i(a_1, ..., a_{j-1}, a_j, a_{j+1}, ..., a_n) \over h}$ ~~~~~~~~~$ = lim_{h \rightarrow 0} { f_i({\bf a} + h {\bf e_j}) - f_i({\bf a}) \over h}$ \vskip 5pt \hrule \vskip -5pt Ex: $f: \R^2 \rightarrow \R$, $f(x, y) = \cases{ 0 & (x, y) = (0, 0) \cr {xy \over x^2 + y^2} & otherwise}$ ${\partial f \over \partial x}(0, 0) = lim_{h \rightarrow 0}{f(0 + h, 0) - f(0, 0) \over h} = lim_{h \rightarrow 0}{0 - 0 \over h} = 0$ ${\partial f \over \partial y}(0, 0) = lim_{h \rightarrow 0}{f(0, 0 + h) - f(0, 0) \over h} = lim_{h \rightarrow 0}{0 - 0 \over h} = 0$ BUT $f$ is not continuous at (0, 0)!!!!!!!!! \vskip 5pt \hrule \vskip -5pt Defn: Suppose $f: \R^1 \rightarrow \R^1$. The derivative of $f$ at the point $a$ is {$f'(a) = lim_{h \rightarrow 0}{f(a+h) - f(a) \over h}$} if above limit exists. $f'(a)$ is the derivative of $f$ at $x$ if $$lim_{h \rightarrow 0}{f(a+h) - f(a) - f'(a)h\over h} = 0$$ $$lim_{x \rightarrow a}{f(x) - f(a) - f'(a)(x-a)\over (x-a)} = 0$$ $y = f'(a)[x-a] + f(a)$ is the linear approximation of $f$ near $a$. \vfill \eject Defn: Let $V$ and $W$ be vector spaces. A {\bf linear transformation} from $V$ to $W$ is a function $T: V \rightarrow W$ that satisfies the following two conditions. For each {\bf u} and {\bf v} in $V$ and scalar $a$, i.) $T(a{\bf u}) = aT({\bf u})$ ii.) $T({\bf u + v}) = T({\bf u}) + T({\bf v})$ %%In this case, we say, $T \in {\cal L}(R^n;R^m)$. \vskip 5pt \hrule Thm: Let $T: V \rightarrow W$ be a linear transformation. Then $T({\bf 0}) = {\bf 0}$ Pf: $T({\bf 0}) = T({\bf 0} + {\bf 0}) = T({\bf 0}) + T({\bf 0})$ \vskip 5pt \hrule Thm: Let $A$ be an $m \times n$ matrix. Then the function $$\matrix{ T:\R^n \rightarrow \R^m \cr T({\bf x}) = A{\bf x}}$$ is a linear transformation. Thm: If $T: \R^n \rightarrow \R^m$ is a linear transformation, then $T({\bf x}) = A{\bf x}$ where $$A = [T({\bf e_1}) ... T({\bf e_n})]$$ Ex: If $T: \R^2 \rightarrow \R$ and $T(1, 0) = 3$, $T(0, 1) = 4$, then $$T(x, y) = xT(1, 0) + yT(0, 1) = (3, 4) \left( \matrix{x \cr y} \right) = 3x + 4y$$ \vfill \eject Defn: Suppose $f: \R^1 \rightarrow \R^1$ is differentiable at a. Then $$lim_{h \rightarrow 0}{f(a+h) - f(a) - f'(a)h\over h} = 0$$ $$lim_{x \rightarrow a}{f(x) - f(a) - f'(a)(x-a)\over (x-a)} = 0$$ Defn: Suppose $A \subset \R^n$, $f: A \rightarrow \R^m$. \vskip -5pt $f$ is said to be {\bf differentiable at a point a} if there exists an open ball $V$ such that $a \in V \subset A$ and a linear function $T$ %%$\in {\cal L}(R^n; R^m)$ such that $$lim_{{\bf h} \rightarrow {\bf 0}}{||f({\bf a}+{\bf h}) - f({\bf a}) - T({\bf h})||\over ||{\bf h}||} = 0$$ $$lim_{{\bf x} \rightarrow {\bf a}}{||f({\bf x}) - f({\bf a}) - T({\bf x} - {\bf a})||\over ||{\bf x} - {\bf a}||} = 0$$ Suppose $f: \R^n \rightarrow \R$. \hfil \break Then $T = ( b_1, ..., b_n)$ and $T{\bf x} = (b_1, ..., b_n) \left( \matrix{x_1 \cr x_1 \cr ... \cr x_n} \right) = \Sigma b_ix_i$ $$lim_{{\bf x} \rightarrow {\bf a}}{||f({\bf x}) - f({\bf a}) - \Sigma b_i(x_i - a_i)||\over ||{\bf x} - {\bf a}||} = 0$$ \eject $f: \R \rightarrow \R$: \vskip -5pt $$lim_{x \rightarrow a}{f(x) - f(a) - f'(a)(x-a)\over (x-a)} = 0$$ $y = f'(a)[x-a] + f(a)$ is the linear approximation of $f$ near $a$. ${df \over dx}(a) = f'(a)$ \vskip 5pt \hrule $f: \R^n \rightarrow \R$: \vskip -5pt $$lim_{{\bf x} \rightarrow {\bf a}}{f({\bf x}) - f({\bf a}) - \Sigma b_i(x_i - a_i) \over ||{\bf x} - {\bf a}||} = 0$$ $y = f({\bf a}) + \Sigma b_i(x_i - a_i)$ approximates $y = f({\bf x})$ $f({\bf x}) = f({\bf a}) + \Sigma b_i(x_i - a_i) + ||{\bf x} - {\bf a}|| r({\bf x}, {\bf a})$ \rightline{where $lim_{{\bf x} \rightarrow {\bf a}} r({\bf x}, {\bf a}) = 0$} $(df)_a = \Sigma b_i(x_i - a_i) $ \vskip 5pt \hrule Mean Value Theorem: Suppose \hfil \break 1.) $f$ continuous on $[a, b]$\hfil \break 2.) $f$ differentiable on $(a, b)$ \vskip -5pt Then there exists $c \in (a, b)$ such that $f'(c) = {f(b) - f(a) \over b - a}$ \vskip 5pt \hrule http://www.geometrygames.org/ \vskip -10pt http://www.geometrygames.org/SoS/ \end