Urysohn Lemma: If X is normal then for any A, B disjoint closed sets in X, there exists a continuous function \(f : X \to [0, 1] \) such that \(f(A) = \{0\} \) and \(f(B) = \{1\} \)

Proof: Suppose A, B disjoint closed sets in X.

Note by listing Q, we can do induction on the rationals, defining a U_q for each rational number (or in our case \(Q \cap [0, 1] \)).

Choose a bijective function \(g : N \to Q \cap [0, 1] \) such that \(g(1) = 1 \) and \(g(2) = 0 \). Let \(g(n) = q_n \)

Define \(U_i = X \) for all \(i > 1 \).

\(q_1 = 1 \): Define \(U_1 = X - B \)

\(q_2 = 0 \): Since X is normal, there exists an open set \(U_0 \) such that \(A \subset U_0 \subset \overline{U_0} \subset U_1 \).

Similarly there exists an open set \(U_{q_3} \) such that \(\overline{U_0} \subset U_{q_3} \subset \overline{U_{q_3}} \subset U_1 \).

Suppose \(U_{q_1}, ..., U_{q_{n-1}} \) have been defined such that \(U_{q_i} \) is open and if \(q_i < q_j \) then \(\overline{U_{q_i}} \subset U_{q_j} \)

Define \(U_{q_n} \):

Let \(s = \max \{q_i \mid q_i < q_n, i = 1, ..., n-1\} \)

Let \(t = \min \{q_i \mid q_i > q_n, i = 1, ..., n-1\} \)

Since X is normal, there exists an open set \(U_{q_n} \) s. t. \(\overline{U_s} \subset U_{q_n} \subset \overline{U_{q_n}} \subset U_t \).

Thus if \(q_n < q_i \), then \(q_n < t \leq q_i \).

Thus if \(q_i < q_n \), then \(q_i \leq s < q_n \).

Hence we have defined \(U_p \) for all \(p \in Q \cup [0, \infty) \) such that \(U_p \) is open for all \(p \) and if \(p < q \) then \(\overline{U_p} \subset U_q \).

Define \(f : X \to \mathcal{R} \) by

\[f(x) = \inf \{ p \mid x \in U_p, \ p \in Q \cap [0, \infty) \} \]

Note infimum exists since \(x \in X = U_{1,1} \) implies \(1.1 \in \{ p \mid x \in U_p, \ p \in Q \cap [0, \infty) \} \) and \(\{ p \mid x \in U_p, \ p \in Q \cap [0, \infty) \} \) is bounded below by 0.

If \(x \in A \), then \(x \in U_0 \). Thus \(f(x) = \inf \{ p \mid x \in U_p, \ p \in Q \cap [0, \infty) \} = 0 \)

If \(x \in B \), then \(x \in U_p = X \forall p > 1 \). But \(x \notin U_1 = X - B \).

Since \(\overline{U_q} \subset U_1 \) for all \(q < 1 \), \(x \notin U_q \) for all \(q \leq 1 \).

Thus \(f(x) = \inf \{ p \mid x \in U_p, \ p \in Q \cap [0, \infty) \} = 1 \)

Since \(x \in U_p = X \) for all \(p > 1 \).

\(f(x) = \inf \{ p \mid x \in U_p, \ p \in Q \cap [0, \infty) \} \leq 1 \forall x \in X \).

Since \(\inf \{ p \mid p \in Q \cap [0, \infty) \} = 0 \),

\(\inf \{ p \mid x \in U_p, \ p \in Q \cap [0, \infty) \} \geq 0 \) for all \(x \in X \).

Thus \(f(X) \subset [0, 1] \) and hence \(f : X \to [0, 1] \).

Claim: \(f : X \to [0, 1] \) is continuous.
\[f : X \to [0, 1]. \] is continuous if and only if \(f : X \to \mathbb{R} \) is continuous.

Claim: \(f : X \to \mathbb{R} \) is continuous.

Take \((a, b) \subset \mathbb{R}\) and \(x \in f^{-1}(a, b)\). Then \(f(x) \in (a, b) \).

Take \(p, q \in \mathbb{Q}\) such that \(a < p < f(x) < q < b \).

Claim: \(x \in U_q - \overline{U_p} \subset f^{-1}(a, b) \).

subclaim 1: \(z \in \overline{U_r} \) implies \(f(z) \leq r \)

Suppose \(z \in \overline{U_r} \). If \(s > r \), then \(z \in \overline{U_r} \subset U_s \).

Hence \(f(z) = \inf \{p \mid z \in U_p, \, p \in \mathbb{Q} \cap [0, \infty)\} \leq \inf \{s \in \mathbb{Q} \mid s > r\} = r \).

subclaim 2: \(z \notin U_r \) implies \(f(z) \geq r \)

Suppose \(z \notin U_r \). If \(s < r \), then \(\overline{U_s} \subset U_r \).

Then \(z \notin U_r \) implies \(z \notin \overline{U_s} \).

Thus \(r \) is a lower bound for \(\{p \mid z \in U_p, \, p \in \mathbb{Q} \cap [0, \infty)\} \).

Hence \(f(z) \geq r \).

Thus
\[(f(z) > r \text{ implies } z \notin \overline{U_r}) \& (f(z) < r \text{ implies } z \in U_r).\]

Hence \(p < f(x) < q \) implies \(x \in U_q - \overline{U_p} \).

If \(z \in U_q - \overline{U_p} \), then \(z \in \overline{U_q} \) and hence \(f(z) \leq q < b \). Also, \(z \notin \overline{U_p} \) implies \(z \notin U_p \), and hence \(f(z) \geq p > a \). Thus \(f(z) \in (a, b) \) and \(U_q - \overline{U_p} \subset f^{-1}(a, b) \). \(U_q - \overline{U_p} \) is open.

Hence \(f \) is continuous.

Defn: If \(f : X \to [0, 1] \) is a fn s. t. \(f(A) = \{0\} \& f(B) = \{1\} \) for \(A, B \subset X \), then \(f \) is said to separate \(A \& B \).

Suppose \(X \) is \(T_1 \). Then \(X \) is \(T_4 \) iff for each pair of disjoint closed subsets of \(X \), there exists a continuous function \(f : X \to [0, 1] \) which separates them.

Defn: \(X \) is completely regular (or \(T_{3.5} \)) if \(X \) is \(T_1 \) and for each \(x \in X \) and for each closed set \(A \subset X \) such that \(x \notin A \), there exists a continuous function \(f : X \to [0, 1] \) such that \(f(A) = \{0\} \) and \(f(x) = 1 \).

36: Imbeddings of Manifolds

\(X \) is locally Euclidean if for all \(x \in X \), there exists \(U \) open such that \(x \in U \), and there exists a homeomorphism \(f : U \to f(U) \subset \mathbb{R}^m \) where \(f(U) \) is open in \(\mathbb{R}^m \).

Ex: \((0, 1)\) is locally Euclidean, but \([0, 1]\) is NOT locally Euclidean.

\(X \) is an \(m-\)manifold if
(1) \(X \) is locally Euclidean
(2) \(X \) is \(T_2 \)
(3) \(X \) 2nd countable.

A 1-manifold is a curve (ex: the circle \(S^1 \))

A 2-manifold is a surface

Orientable surfaces: sphere \(S^2 \), torus \(T^2 \), connected sum of tori \(T^2 \# \ldots \# T^2 \).

Non-orientable surfaces: projective plane \(\mathbb{R}P^2 \), Klein bottle, \(\mathbb{R}P^2 \# \mathbb{R}P^2 \), connected sum of projective planes \(\mathbb{R}P^2 \# \ldots \# \mathbb{R}P^2 \).