Lemma: If S is a subbasis for a topology on X, then $\mathcal{B} = \{\bigcap_{i=1}^{n} S_i \mid S_i \in S\}$ is a basis for a topology.

(1) Show for each $x \in X$, there is at least one basis element B containing x.

(2) Show that if $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that

$$x \in B_3 \subset B_1 \cap B_2.$$

Proof of (2): Suppose that $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$

Find $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

Let $B_3 = B_1 \cap B_2$.

Note $x \in B_3 = B_1 \cap B_2 \subset B_1 \cap B_2$.

 $B_1, B_2 \in \mathcal{B}$ implies that B_i is a finite intersection of subbasis elements for i = 1, 2. Thus since $B_1 \cap B_2$ is the intersection of two sets each of which is a finite intersection of subbasis elements, $B_1 \cap B_2$ is a finite intersection of subbasis elements. Thus $B_3 = B_1 \cap B_2 \in \mathcal{B}$. OR

 $B_1, B_2 \in \mathcal{B} \text{ implies that } B_1 = \bigcap_{i=1}^n S_i \text{ and} \\ B_2 = \bigcap_{i=1}^m U_i \text{ where } S_i, U_i \in \mathcal{S} \text{ for all } i. \text{ Thus,} \\ B_3 = B_1 \cap B_2 = (\bigcap_{i=1}^n S_i) \cap (\bigcap_{i=1}^m U_i) = \bigcap_{i=1}^{m+n} V_i \\ \text{where } V_i = \begin{cases} S_i, & i = 1, \dots, n \\ U_i & i = n+1, \dots, m+n \end{cases} \text{ for all } i. \end{cases}$ Thus $V_i \in \mathcal{S} \text{ and hence } B_3 = B_1 \cap B_2 \in \mathcal{B}.$

Defn: The topology generated by the subbasis S is the topology generated by the basis $\mathcal{B} = \{ \bigcap_{i=1}^{n} S_i \mid S_i \in S \}.$

Corollary: The topology generated by the subbasis \mathcal{S} is the collection \mathcal{T} of all unions of finite intersections of elements of \mathcal{S} .