Lemma: If S is a subbasis for a topology on X, then $\mathcal{B} = \{ \bigcap_{i=1}^n S_i \mid S_i \in \mathcal{S} \}$ is a basis for a topology.

- (1) Show for each $x \in X$, there is at least one basis element B containing x.
- (2) Show that if $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$, then there exists $B_3 \in \mathcal{B}$ such that

$$x \in B_3 \subset B_1 \cap B_2$$
.

Proof of (2):

Suppose that $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$

Find $B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$.

Let $B_3 = B_1 \cap B_2$.

Note $x \in B_3 = B_1 \cap B_2 \subset B_1 \cap B_2$.

 $B_1, B_2 \in \mathcal{B}$ implies that B_i is a finite intersection of subbasis elements for i = 1, 2. Thus since $B_1 \cap B_2$ is the intersection of two sets each of which is a finite intersection of subbasis elements, $B_1 \cap B_2$ is a finite intersection of subbasis elements. Thus $B_3 = B_1 \cap B_2 \in \mathcal{B}$.

OR

$$B_1, B_2 \in \mathcal{B}$$
 implies that $B_1 = \bigcap_{i=1}^n S_i$ and $B_2 = \bigcap_{i=1}^m U_i$ where $S_i, U_i \in \mathcal{S}$ for all i . Thus, $B_3 = B_1 \cap B_2 = (\bigcap_{i=1}^n S_i) \cap (\bigcap_{i=1}^m U_i) = \bigcap_{i=1}^{m+n} V_i$ where $V_i = \begin{cases} S_i, & i = 1, ..., n \\ U_i & i = n+1, ..., m+n \end{cases}$ for all i .

Thus $V_i \in \mathcal{S}$ and hence $B_3 = B_1 \cap B_2 \in \mathcal{B}$.

Defn: The topology generated by the subbasis S is the topology generated by the basis $\mathcal{B} = \{ \bigcap_{i=1}^{n} S_i \mid S_i \in S \}.$

Corollary: The topology generated by the subbasis S is the collection T of all unions of finite intersections of elements of S.