$bdE = \overline{E} \cap \overline{X - E} = \overline{E} - E^{o}$ $p \in X$ is a boundary point of E if $p \in bdE$. p is an isolated point of E if $p \in E$, but $p \notin E'$. $p \in X$ is a limit point of E if for all U open such that $x \in U$, $U \cap E - \{x\} \neq \emptyset$

A point p is an interior point of E if there exists a basis element B such that $p \in B \subset E$.

 $E^{o} = \text{the set of all interior points}$ = { $x \in E$ | there exist $B \in \mathcal{B}$ s. t. $x \in B \subset E$ } = largest open set contained in $E = \bigcup_{U^{open} \subset E} U$. Note: $E^{o} \subset E$. E is open iff every point of E is an interior point. E is open iff $E = E^{o}$

E is open iff
$$E = E^{c}$$
.
E is open iff $bdE \subset E^{c}$

- $\overline{E} = E \cup E' = \text{smallest closed set containing } E = \bigcap_{F^{closed} \supset E} F$ $= \{x \in X \mid \text{ for all } U \text{ open such that } x \in U, \ U \cap E \neq \emptyset \}$
- E is closed iff E^c is open.
- E is closed iff $E = \overline{E}$.
- E is closed iff $E' \subset E$.
- E is closed iff $bdE \subset E$

Subspace topology: Suppose $Y \subset X$.

E is open in Y if and only if there exists a set U open in X such that $E = U \cap Y$.

E is closed in Y if and only if there exists a set F closed in X such that $E = F \cap Y$.

Questions to consider:

Can a point be both a boundary point and an isolated point?

Can a point be both a boundary point and a limit point?

Can a point be both a boundary point and an interior point?

Can a point be both a limit point and an isolated point?

Can a point be both a limit point and an interior point?

Can a point be both an isolated point and an interior point?

Consider the integers, rationals, $\{\frac{1}{n} \mid n = 1, 2, 3, ...\}$, (0, 1), (0, 1], [0, 1], using standard, subspace, discrete, indiscrete topologies.

Give an example to show that a sequence can have a limit, but when the sequence is considered as a set, the set has no limit points.

Prove that T_1 is a needed part of the hypothesis of thm 17.9 and Hausdorff is a needed part of the hypothesis of thm 17.10.