$$
\begin{aligned}
\bar{A} & =C l(A)=\text { closure of } A: \\
& =\cap_{A \subset F^{\text {closed }}} F \\
& =\text { smallest closed set containing } A \\
& =A \cup A^{\prime} \\
& =\left\{x \mid x \in U^{\text {open }} \text { implies } U \cap A \neq \emptyset\right\} \\
& =\{x \mid x \in B \in \mathcal{B} \text { implies } B \cap A \neq \emptyset\}
\end{aligned}
$$

$$
\begin{aligned}
A^{o} & =\operatorname{Int}(A)=\text { interior of } A: \\
& =\cup_{U^{\text {open }} \subset A} U
\end{aligned}
$$

$=$ largest open set contained in $A$

