1.1:

Examples of differentiable equation:
1.) $F=m a=m \frac{d v}{d t}=m g-\gamma v$
2.) Mouse population increases at a rate proportional to the current population:

More general model : $\frac{d p}{d t}=r p-k$ where $r=$ growth rate or rate constant, $k=$ predation rate $=\#$ mice killed per unit time.
direction field $=$ slope field $=$ graph of $\frac{d v}{d t}$ in $t, v$-plane. *** can use slope field to determine behavior of $v$ including as $t \rightarrow \infty$.

Equilibrium Solution $=$ constant solution
1.2:

Solved $\frac{d y}{d t}=a y+b$ by separating variables:
$\frac{d y}{a y+b}=d t$
$\int \frac{d y}{a y+b}=\int d t$
$\frac{\ln |a y+b|}{a}=t+C$
$\ln |a y+b|=a t+C$
$e^{l n|a y+b|}=e^{a t+C}$
$|a y+b|=e^{C} e^{a t}$
$a y+b= \pm\left(e^{C} e^{a t}\right)$
$a y=C e^{a t}-b$
$y=C e^{a t}-\frac{b}{a}$
Initial Value Problem: $y\left(t_{0}\right)=y_{0}$
1.3:

ODE (ordinary differential equation): single independent variable
$\mathrm{Ex}: \frac{d y}{d t}=a y+b$
vs
PDE (partial differential equation): several independent variables

Ex: $\frac{\partial x y}{\partial x}=\frac{\partial x y}{\partial y}$
order of differential eq'n: order of highest derivative example of order $n: y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right)$

Linear vs Non-linear
linear: $a_{0}(t) y^{(n)}+\ldots+a_{n}(t) y=g(t)$
Ex: $t y^{\prime \prime}-t^{3} y^{\prime}-3 y=\sin (t)$
Ex: $2 y^{\prime \prime}-3 y^{\prime}-3 y^{2}=0$
********Existence of a solution ${ }^{* * * * * * * * * * * * * * ~}$
******** Uniqueness of solution ${ }^{* * * * * * * * * * * * * * * ~}$

CH 2: Solve $\frac{d y}{d t}=f(t, y)$
2.1: First order linear eqn: $\frac{d y}{d t}+p(t) y=g(t)$
$\operatorname{Ex} 1: y^{\prime}=a y+b$
Ex 2: $y^{\prime}+3 t^{2} y=t^{2}, y(0)=0$
Note: could use section 2.2 method, separati variables to solve ex 1 and 2 .
$\operatorname{Ex} 3: t^{2} y^{\prime}+2 t y=t \sin (t)$
Ex 1: $2 \frac{d y}{d t}+10 y=16$

