Math 132 Midterm August 2004

[20-40pts] Answer all of the following 6 questions. You do not need to prove your answer for these first 6 questions. Note for the first 5 questions, you are working in \mathcal{Z} , the set of integers, (under various topologies including the subspace topology) and NOT the set of real numbers.

1.) Let $X = \mathcal{Z}$, then the set of limit points of $(0,3) \cap X$ in X, $[(0,3) \cap X]' =$

2.) Let $X = \mathcal{Z}$, then the closure of $(0,3) \cap X$ in $X, \overline{(0,3) \cap X} =$

3.) Let $X = \mathcal{Z}$, then the interior of $(0,3) \cap X$ in X, $[(0,3) \cap X]^o =$

4.) Suppose $X = \mathcal{Z}$ has the indiscrete topology, then the set of limit points of $(0,3) \cap X$ in X, $[(0,3) \cup X]' =$

5.) Suppose $X = \mathcal{Z}$ has the indiscrete topology, then the interior of $(0,3) \cap X$ in X, $[(0,3) \cap X]^o =$

6.) If d is the discrete metric on \mathcal{R} , the set of real numbers, then

 $B_d(0,1) = _$ _____ $B_d(0,2) = _$ _____

[60-80pts] Prove 4 of the following 6. You may do more than these 4 problems for possible partial credit as discussed in class.

Your best three answers are: ____

Your fourth best answer is: _____

1. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x = 0 \text{ or } y = 0\}$ and let $W = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$ where X and W are subspaces of \mathbb{R}^2 . Define $f: X \to W$ by f(x, y) = (x, 0).

Is f continuous? Is f an open map? Is f a closed map. In each case, prove your answer.

- 2. The fixed point set F of a function $f: X \to X$ is the set $F = \{x \in X: f(x) = x\}$. Show that if X is Hausdorff and f is continuous then F is a closed subset of X.
- 3. Let $f : X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, prove that f is a homeomorphism. Give a specific example to show that f need not be a homeomorphism if X is not compact. Also give a specific example to show that f need not be a homeomorphism if Y is not Hausdorff.
- 4. Show that X is compact if and only if every collection \mathcal{C} of closed sets in X having the finite intersection property, the intersection $\cap_{C \in \mathcal{C}} C$ of all the elements of \mathcal{C} is nonempty.
- 5. Consider the product, uniform, and box topologies on R^{ω} .

In which topologies are the following functions from the set of real numbers to R^{ω} continuous (prove your answer):

$$\begin{split} f(x) &= (x, x^2, x^3, \ldots) \\ g(x) &= (x, x, x, \ldots) \\ k(x) &= (0, 0, 0, \ldots) \end{split}$$

6. Let R^{∞} be the subset of R^{ω} consisting of all sequences that are eventually zero. What is the closure of R^{∞} in R^{ω} in the uniform topology. What is the closure of R^{∞} in R^{ω} in the box topology. Prove your answer.