section 18: 13) Suppose \(A \subset X \). Let \(f : A \rightarrow Y \) be continuous where \(Y \) is \(T_2 \). If \(g_i : \overline{A} \rightarrow Y \) is continuous for \(i = 1, 2 \) and if \(g_1|_A = g_2|_A = f \), then \(g_1 = g_2 \)

Pf: Suppose \(g_1 \neq g_2 \). Then \(\exists x \in \overline{A} - A \) such that \(g_1(x) \neq g_2(x) \). \(Y \) \(T_2 \) implies \(\exists V_1, V_2 \) open in \(Y \) such that \(g_i(x) \in V_i \) and \(V_1 \cap V_2 = \emptyset \)

\[x \in g_i^{-1}(V_i) \] implies \(x \in g_1^{-1}(V_1) \cap g_2^{-1}(V_2) \). \(g_i \) continuous implies \(g_i^{-1}(V_i) \) open in \(\overline{A} \) and hence \(g_1^{-1}(V_1) \cap g_2^{-1}(V_2) \) open in \(\overline{A} \). Thus there exists \(U \) open in \(X \) such that \(g_i^{-1}(V_i) \cap g_2^{-1}(V_2) = U \cap \overline{A} \). Note \(x \in U \).

\[x \in \overline{A} - A \] implies \(x \in \overline{A}' \). Thus \(\exists a \in U \cap A - \{x\} \subset g_1^{-1}(V_1) \cap g_2^{-1}(V_2) \). But \(f(a) = g_i(a) \in g_i(g_i^{-1}(V_i)) \subset V_i \). But \(V_1 \cap V_2 = \emptyset \).

NOTE: It may have been simpler to WLOG assume \(X = \overline{A} \), but you must state why this WLOG works.