Theorem 1. The subspace of a regular space is regular - Theorem 31.2 from Munkres.

Proof. Let Y be a subspace of a regular space X. Then one-point sets are closed in Y.
Let x be any point in Y and let B be a closed subset of Y disjoint from x. Then $\overline{B} \cap Y = B$, where \overline{B} is the closure of B in X.
Thus $x \notin \overline{B}$, so by using the definition of regularity of X, we can choose disjoint open sets U and V of X containing x and \overline{B}, respectively.
Then $U \cap Y$ and $V \cap Y$ are disjoint open sets in Y containing x and B, respectively. □