The continuous image of a Lindelöf space is also Lindelöf

Let $f : X \to f(X)$ be a continuous map and \mathcal{A} be any covering of $f(X)$. Then $\{f^{-1}(A) | A \in \mathcal{A}\}$ is a collection of sets covering X; these sets are open in X by the continuity of f. Then, since X is a Lindelöf space, \exists a countable subcover $\{f^{-1}(A_n)\}$ of $\{f^{-1}(A) | A \in \mathcal{A}\}$. Then $\{A_n\}$ is a countable subcover of the original cover \mathcal{A}. Thus, $f(X)$ is Lindelöf.