1.) Definition: The point $x \in X$ is a limit point of A if

2.) Suppose \mathbb{R} = the set of real numbers has the standard topology. Let \mathbb{Q} = the set of rational numbers. Calculate the following in \mathbb{R}:

$\mathbb{Q}^o =$ ____________ \hspace{1cm} $\overline{\mathbb{Q}} =$ ____________ \hspace{1cm} $\mathbb{Q}' =$ ____________

3.) The following two statements are false. Show that the statements are false by providing counter-examples. You do not need to explain your counter-examples.

3a.) If $x_n \in A$, then there exists a unique point $x \in \overline{A}$ such that $x_n \to x$.

3b.) If $f : X \to Y$ is continuous, then $\overline{f(A)} \subset f(\overline{A})$.
Prove 2 of the following 3. Clearly indicate your choices.

1. The product of two Hausdorff spaces is Hausdorff.

2. Let Y be a subspace of X. If $A \subset Y$, then $Cl_Y(A) = \overline{A} \cap Y$.

3. Show that $D((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - y_1|, \frac{|x_2 - y_2|}{2}\}$ is a metric on \mathbb{R}^2 where $(x_i, y_i) \in \mathbb{R}^2$. Show that this metric generates the standard topology on \mathbb{R}^2.