Point Set Topology

Danilo Diedrichs

December 2008

Theorem:

The image of a connected space under a continuous map is connected.

Proof:

Let $f: X \to Y$ be a continuous function. We wish to show that:

X is conntected $\Rightarrow f(X)$ is conntected

The contrapositive of this statement is:

f(X) is not conntected $\Rightarrow X$ is not conntected

which by definition is equivalent to:

 \exists a separation of $f(X) \Rightarrow \exists$ a separation of X

Suppose there exists a separation of f(X), i.e. $\exists A$ and B disjoint, nonempty, open sets such that $A \cup B = f(X)$.

Note that the function $g: X \to f(X)$ is surjective and continuous, since $f: X \to Y$ is continuous by assumption.

Therefore $g^{-1}(A)$ and $g^{-1}(B)$ are disjoint, nonempty, open sets such that $g^{-1}(A) \cup g^{-1}(B) = X$. (They are nonempty because g is surjective and open because g is continuous).

Therefore $g^{-1}(A)$ and $g^{-1}(B)$ form a separation of X. QED