22M:132: Topology Final Exam
Dec. 17, 2008
1.) Let \mathbf{R} be the set of real numbers and let \mathbf{Z} be the set of integers. Let $\bar{d}(x, y)=\min \{1,|x-y|\}$, Identify the following subsets of \mathbf{R}.
[3] 1a.) $B_{\bar{d}}(0,1)=$ \qquad
[3] 1b.) $\overline{B_{\bar{d}}(0,1)}=$ \qquad
[3] 1c.) $\{x \mid \bar{d}(x, 0) \leq 1\}=$ \qquad
[3] 1d.) The set of limit points of $\mathbf{Z}=\mathbf{Z}^{\prime}=$ \qquad
[3] 1e.) The closure of $\mathbf{Z}=\overline{\mathbf{Z}}=$ \qquad

Problems 2 and 3 are optional:
[2] 2.) An example of a paracompact space is \qquad
3.) Circle T for true and F for false.
[2] 3a.) If X is paracompact, then an arbitrary union of closed sets is closed. T
[2] 3b.) If \mathcal{A} is a locally finite collection of closed subsets of X, then $\cup_{A \in \mathcal{A}} A$ is closed. T
[80] Prove 4 from the following. Clearly indicate your choices. Note \mathbf{R} is the set of real numbers

Your 4 choices: \qquad
1.) Let X be a topological space in which one-point sets are closed in X. Show that X is regular if and only if for all $x \in X$, for every open set U in X such that $x \in U$, there is an open set V such that $x \in V \subset \bar{V} \subset U$.

2i.) Suppose $f: X \rightarrow Y$ is bijective and continuous, X is compact, and Y is T_{2}. Show that f is a homeomorphism.
ii.) Give an example of a function $f: X \rightarrow Y$ which is bijective and continuous, but not a homeomorphism where X is a subspace of a manifold and Y is a compact manifold.
3.) A connected, locally pathwise connected space is pathwise connected. (Hint: find a set which is both open and closed).
4.) Recall that if G is a topological group, then $m: G \times G \rightarrow G, m(x, y)=x y$ is continuous. Let G be a topological group and let $x, y \in G$.
i.) Show that for every open neighborhood U of $x y$, there exists open sets, V and W, such that $x \in V, y \in W$ and $V W \subset U$.
ii.) If U is an open set containing the identity element e, then there exists an open set V such that $e \in V$ and $V^{2}=\left\{v_{1} v_{2} \mid v_{i} \in V\right\} \subset U$.
5.) Every closed subspace of a paracompact space is paracompact.
6.) Let $Y^{X}=\{f: X \rightarrow Y\}$. Let $S(x, U)=\left\{f \in Y^{X} \mid f(x) \in U\right\}$.

The topology of pointwise convergence on Y^{X} is the topology generated by the subbasis $\mathcal{S}=$ $\{S(x, U) \mid x \in X, U$ open in $Y\}$.
i.) $S(0,(1,2) \times(1,2)) \subset\left(\mathbf{R}^{2}\right)^{\mathbf{R}}$. Give an example of a function in $S(0,(1,2) \times(1,2))$
ii.) Prove that the sequence f_{n} converges in Y^{X} where Y^{X} has the topology of pointwise convergence if and only if for all $x \in X$, the sequence $f_{n}(x)$ converges to $f(x)$ in Y.
7.) Suppose $f: X \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$ are continuous.
i.) Show that $\{x \in X \mid f(x)=g(x)\}$ is closed in X.
ii.) Suppose $\{x \in X \mid f(x)=g(x)\}$ is dense in X (i.e., $\overline{\{x \in X \mid f(x)=g(x)\}}=X$). Show that $f=g$.
8.) Let $A^{\prime}=$ the set of limit points of A. Determine if the following statements are true.

8i.) $\left(A^{\prime}\right)^{\prime} \subset A^{\prime}$
8ii.) $A^{\prime} \subset\left(A^{\prime}\right)^{\prime}$.
9.) Every closed subspace of a compact space is compact.

Note you may choose any 4 problems from the above 9 problems (pages 2-3). Problems 1-6 are the same on everyone's final exam. Problems 7-9 are additional problems from earlier material.

Your page 1 of the exam will be worth 21 points whether or not you choose to do problems 2 and/or 3. You may do all/part/ or none of problems 2, 3 on page 1 as you choose. Problem 1 on page 1 is required.

