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ON THE SKEIN EXACT SQUENCE FOR KNOT FLOER

HOMOLOGY

PETER OZSVÁTH AND ZOLTÁN SZABÓ

Abstract. The aim of this paper is to study the skein exact sequence for knot Floer
homology. We prove precise graded version of this sequence, and also one using HF

−.
Moreover, a complete argument is also given purely within the realm of grid diagrams.

1. Introduction

Knot Floer homology is an invariant for knots in S3 defined using Heegaard diagrams
and holomorphic disks [9], [12]. This invariant can be used to construct a bigraded group

ĤFK, endowed with an Alexander and a Maslov grading, has as its Euler characteristic
the Alexander polynomial of the knot. Another variant gives a bigraded Abelian group
HF−, which is a module over the polynomial ring Z[U ], and whose specialization (in a

suitable sense) to U = 0 gives ĤFK.
The traditional skein relation for the Alexander polynomial translates into this con-

text into a long exact sequence which relates ĤFK of a knot with a distinguished
positive crossing K+, the knot Floer homology of the oriented resolution K0 of that
crossing (which is a link), and also the knot Floer homology of the knot K− obtained by
changing the distinguished positive crossing in K+ to a negative crossing, see Figure 1.
The first version of this exact triangle appeared in [9], where the term involving K0

is defined using a suitable generalization of knot Floer homology to an invariant for

oriented links, which we denote by ĤFK(K0).

ba baa b

Figure 1. Skein triple. Diagram of a positive crossing, a negative
crossing, and the (oriented) resolution respectively.
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Link Floer homology is given a more general definition in [8], as a multi-graded
theory whose Euler characteristic is the multi-variable Alexander polynomial. Alge-
braically, the invariant HFL−(L) is a multi-graded theory which is the homology of a
chain complex CFL−(L) over Z[U1, ..., Uℓ], where the formal variables Ui are in one-to-
one correspondence with the components of the link. The invariant appearing in the

earlier skein exact sequence is the homology group ĤFK(L) gotten by setting all the
Ui = 0, and adding up all of the “Alexander gradings”.

In [5], link Floer homology is given a purely combinatorial calculation via “grid di-
agrams”. This thread is pursued further in [6], where the basics of the theory are
developed from a purely combinatorial point of view.

The aim of the present paper is to give a different proof of the skein exact sequence
for knot Floer homology. The advantages of this proof is that it generalizes to the
case of HFK−, and also we can give more precise grading information about the maps.
Moreover, this perspective can be applied readily to give another (quite similar) proof
which works purely within the context of grid diagrams. Aside from an aesthetic benefit,
this also gives a direct combinatorial way to calculate the maps appearing in the skein
exact sequence.

Theorem 1.1. Let K+, K0, and K− be three links, which differ at a single crossing
as indicated by the notation. Then, if the two strands meeting at the distinguished
crossing in K+ belong to the same component, so that in the oriented resolution the two
strands corresponding to two distinct components a and b of K0, then there are long
exact sequences

... −−−−−→ ĤFKm(K+, s)
bf

−−−−−→ ĤFKm(K−, s)
bg

−−−−−→ ĤFKm−1(K0, s)
bh

−−−−−→ ĤFKm−1(K+, s)
bf

−−−−−→ ...

... −−−−−→ HFK−
m(K+, s)

f−

−−−−−→ HFK−
m(K−, s)

g−

−−−−−→ Hm−1

“

CFL−(K0)
Ua−Ub

, s
”

h−

−−−−−→ HFKm−1(K+, s)
bf

−−−−−→ ...

If they belong to different components, we have a long exact sequence

... −−−−−→ ĤFKm(K+, s)
bf

−−−−−→ ĤFKm(K−, s)
bg

−−−−−→
“

ĤFK(K0) ⊗ V
”

m−1,s

bh
−−−−−→ ĤFKm−1(K+, s)

bf
−−−−−→ ...

... −−−−−→ HFK−
m(K+, s)

f−

−−−−−→ HFK−
m(K−, s)

g−

−−−−−→
`

HFK−(K0) ⊗ W
´

m−1,s

h−

−−−−−→ ĤFKm−1(K+, s)
bf

−−−−−→ ...,

where here V is the bigraded module

Vm,s
∼=





Z2 (m, s) = (−1, 0)
Z (m, s) = (0,−1) or (1, 0)
0 otherwise,

and W is the bigraded module

Wm,s
∼=

{
Z (m, s) = (0, 0) or (1, 1)
0 otherwise.

The reader is warned: there are two natural conventions on Maslov grading, one
which takes half-integral values (cf. [9]), and the other which always takes integral
values (cf. [8]). In the above statement, we have adopted the latter convention.
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A version of Theorem 1.1 appears in [9], except that the map defined there f is
not known to preserve Maslov gradings. This renders that version of the skein exact
sequence somewhat cumbersome to use. It is interesting to note that the the module V
appears in for quite different reasons in the two approaches.

Two slightly different proofs of Theorem 1.1 are given. The first uses pseudo-
holomorphic disks. The second is a combinatorial proof involving grid diagrams. This
proof is slightly more awkward, as one cannot use a fixed grid diagram for all three
knots; and of course, it is slightly less awkward in that it is a purely combinatorial
argument, and the maps can be defined by explicit counts of polygons. Both proofs can
be seen as a double iteration of the skein relating involving singular knots from [11],
defined using Floer homology for singular knots from [7]. We have however chosen to
give a more self-contained proof of Theorem 1.1 making no explicit reference to Floer
homology for singular links; but our proof here is very similar in spirit to the proof of
the skein sequence involving singular links, [11, Theorem 1.1].

It is possible that the map defined here f̂ differs from the one used in [9]. It also
seems different from the one used in [1]. In the next section, we briefly recall knot Floer
homology, and set up our notation. In Section 3, we state and prove a theorem which
specializes readily to Theorem 1.1.

1.1. Acknowledgements. We wish to thank Benjamin Audoux, Étienne Gallais, Matt
Hedden, Ciprian Manolescu, and Dylan Thurston for interesting discussions.

2. Floer homology of knots and links

Knot Floer homology is a bigraded Abelian group associated to a knot in S3, cf. [9],
[12]. We will briefly sketch this construction, and refer the reader to the above sources
for more details.

Let Σ be a surface of genus g, let α = {α1, ..., αg+n−1} be a collection of pairwise
disjoint, embedded closed curves in Σ which span a g-dimensional subspace of H1(Σ).
This specifies a handlebody Uα with boundary Σ. Moreover, α1 ∪ ...∪αg+n−1 divides Σ
into n components, which we label

Σ − α1 − ... − αg+n−1 = A1

∐
...

∐
An.

Fix another such collection of curves β = {β1, ..., βg+n−1}, giving another handlebody
Uβ . Write

Σ − β1 − ... − βg+n−1 = B1

∐
...

∐
Bn.

Let Y be the three-manifold specified by the Heegaard decomposition specified by the
handlebodies Uα and Uβ. Choose collections of disjoint points O = {O1, ..., On} and
X = {X1, ..., Xn}, which are distributed so that each region Ai and Bi contains exactly
one of the points in O and also exactly one of the points in X. We can use the points
O and X to construct an oriented, embedded one-manifold ~L in Y by the following
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procedure. Let ξi be an arc connecting the point in X ∩ Ai with the point in O ∩ Ai,
and let ξ′i be its pushoff into Uα i.e. the endpoints of ξ′i coincide with those of ξi (and
lie on Σ), whereas its interior is an arc in the interior of Uα. The arc is endowed with
an orientation, as a path from an element of X to an element of O. Similarly, let ηi be
an arc connecting O∩Bi to X∩Bi, and η′

i be its pushoff into Uβ . Putting together the

ξ′i and η′
i, we obtain an oriented link ~L in Y .

Definition 2.1. The data (Σ, α, β, O, X) is called a pointed Heegaard diagram com-

patible with the oriented link ~L ⊂ Y .

An oriented link in a closed three-manifold Y always admits a compatible pointed
Heegaard diagram. In this article, we will restrict attention to the case where the
ambient three-manifold Y is S3.

Consider now the g + n − 1-fold symmetric product of the surface Σ, Symg+n−1(Σ).
This space is equipped with a pair of tori

Tα = α1 × ... × αg+n−1 and Tβ = β1 × ... × βg+n−1.

Knot Floer homology is defined using a suitable variant of Lagrangian Floer homology
for this pair of subsets.

Specifically, let S denote the set of intersection points Tα ∩ Tβ ⊂ Symg+n−1(Σ). Let

CFK−(~L) be the free module over Z[U1, ..., Un] generated by elements of S, where here
the {Ui}

n
i=1 are indeterminates.

To construct bigradings, consider functions

A : S × S −→ Z and M : S × S −→ Z

defined as follows. Given x,y ∈ S, let

A(x,y) =
n∑

i=1

(Xi(φ) − Oi(φ)),

where φ ∈ π2(x,y) is any Whitney disk from x to y, and Xi(φ) resp. Oi(φ) is the
algebraic intersection number of φ with the submanifold {Xi} × Symg+n−2(Σ) resp.
{Oi} × Symg+n−2(Σ). Also, let

M(x,y) = µ(φ) − 2
n∑

i=1

Oi(φ),

where µ(φ) denotes the Maslov index of φ; see [4] for an explicit formula in terms of data
on the Heegaard diagram. Both A(x,y) and M(x,y) are independent of the choice of
φ in their definition. There are functions A : S −→ Z and M : S −→ Z both of which
are uniquely specified to overall translation by the formulas

A(x) − A(y) = A(x,y) and M(x) − M(y) = M(x,y).(1)
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The additive indeterminacy in A and M can be removed, as we explain at the end of
the present subsection.

Let CFK−(~L) be the free module over Z[U1, ..., Un] generated by S. This module
inherits a bigrading from the functions M and A above, with the additional convention
that multiplication by Ui drops the Maslov grading by two, and the Alexander grading
by one.

We define the differential

∂ : CFK−(~L) −→ CFK−(~L)

by the formula:

(2) ∂(x) =
∑

y∈S

∑


φ∈π2(x,y)

∣∣ µ(φ) = 1
Xi(φ) = 0 ∀i = 1, ..., n

ff

#M̂(φ) · U
O1(φ)
1 · · ·UOn(φ)

n · y.

Here, M̂(φ) denotes the moduli space of pseudo-holomorphic disks representing the

homotopy class φ, divided out by the action of R. The signed count #M̂(φ) is associ-
ated to an orientation system ǫ, which counts boundary degenerations with boundary
entirely inside Tα with multiplicity +1 and those with boundary entirely inside Tβ

with multiplicity −1. When ~L = ~K is a knot, it it is sometimes convenient to con-

sider instead the complex ĈFK( ~K) = CFK−( ~K)/(U1 = 0). The homology groups

HFK−( ~K) = H∗(CFK−( ~K)) and ĤFK( ~K) = H∗(ĈFK( ~K)) are knot invariants [9], [12],
see also [8], [5] for the case of multiple basepoints, and also [6] for a further discussion
of signs. The bigradings on the complex induce bigradings on the homology

HFK−( ~K) =
⊕

m,s

HFK−
m( ~K, s) and ĤFK( ~K) =

⊕

m,s

ĤFKm( ~K, s).

For an ℓ component link, we consider CFK−(~L) as a module over Z[U1, ..., Uℓ], where

there is one variable Ui corresponding to each component of ~L. In this case, it is natural

to consider ĈFK(~L) = CFK−(~L)/{U1 = ... = Uℓ = 0}, and their associated bigraded
homology modules

HFK−(~L) =
⊕

m,s

HFK−
m(~L, s) and ĤFK(~L) =

⊕

m,s

ĤFKm(~L, s).

In fact, ĤFK(~L) was first defined in [9] using a slightly different construction, but the
equivalence of the two constructions was established in [8, Theorem 1.1]. (In fact, in [8],
a more general multi-graded theory is defined, with one Alexander grading for each
component of the link. The present Alexander grading can be thought of as the sum of
these ℓ Alexander gradings. We will have no need for this more general construction in
the present paper.)
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We have defined the bigradings only up to additive constants. This indeterminacy
can be removed with the following conventions. Dropping the condition that all the

Xi(φ) = 0 in the differential for ĈFK, we obtain another chain complex which retains
its Maslov grading, and whose homology is isomorphic to Z (cf. [8, Theorem 4.4]).

Similarly, the Alexander grading can be characterized as follows. If we consider
the complex C = CFK−/(U1 = ....Un = 1). This complex retains a Z-grading by
N = M − 2A, and its homology is isomorphic to H∗(T

n−1) as a relatively graded
Abelian group. We fix the additive constant in the N -grading by the requirement that

Hm(C) ∼= Hm+2ℓ−n−1(T
n−1).

This in turn pins down that additive indeterminacy of A.

2.1. Grid diagrams. Knot Floer homology has a combinatorial description for Hee-
gaard diagrams associated to grid presentations according to [5], cf. also [6], [13].

A grid diagram G is a Heegaard diagram for a knot, where the Heegaard surface is
a torus, and all the α (and the β) are parallel, homologically non-trivial circles. We
draw the α as horizontal, and the β as vertical. The only non-trivial contributions in
the differential are given by rectangles (and each such rectangles counts with a sign and
also a product of variables associated to the the squares marked O inside the rectangle).
See [6] for a development of this complex which is logically independent of holomorphic
curve techniques, including a proof of knot invariance.

More precisely, if {α1, ..., αn} denote the horizontal circles and {β1, ..., βn} are the
vertical ones, our generating set S consists of permutations σ, which we think of as
n-tuples of intersection points x, xi = αi ∩ βσ(i). There are four embedded rectangles
in the torus whose boundary consists of two segments within the α and two segments
with in the β, and whose four corners are points from x and y. Two of these rectangles
are oriented so that their oriented boundary meets the α in a pair of arcs going from
points in x to points in y. We say that those are the two rectangles from x to y, and
we let Rect(x,y) denote this set of rectangles. If r ∈ Rect(x,y) has the property that
its interior contains none of the points from x or y, then we say r is an empty rectangle.

In [6], we verify the existence of a map ǫ : Rect◦ −→ {±1} whith the following
properties:

• if x,y,y′,q ∈ S are generators and r1 ∈ Rect◦(x,y), r2 ∈ Rect◦(y,q) and
r′1 ∈ Rect◦(x,y′), r2 ∈ Rect◦(y′,q), then ǫ(r1)ǫ(r2) = −ǫ(r′1)ǫ(r

′
2)

• if r1 ∈ Rect◦(x,y), r2 ∈ Rect◦(y,x) are a pair of rectangles whose union forms
a vertical annulus, then ǫ(r1) · ǫ(r2) = −1

• if r1 ∈ Rect◦(x,y), r2 ∈ Rect◦(y,x) are a pair of rectangles whose union forms
a horizontal annulus, then ǫ(r1) · ǫ(r2) = 1
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The chain complex associated to a grid diagram is freely generated by S over Z[U1, ..., Un],
with differential given by

∂−(x) =
∑

y∈S

∑

{r∈Rect◦(x,y)

∣∣r∩X=∅}

ǫ(r) · U
O1(r)
1 · ... · UOn(r)

n · y.

As in [5], this is a special case of the knot Floer homology chain complex considered
earlier.

3. Proofs of the skein sequence

Theorem 1.1 follows from the following more general result, Theorem 3.1, which we
state after introducing a few preliminaries.

Let K+ be a positive crossing, and label its two outgoing edges by a and b, and its
two in-coming ones by c and d, so that b and c are connected by the crossing, and a
and c are connected in the resolution.

Recall that Ub −Uc is an endomorphism of the chain complex R = CFK−(K0), which
drops Alexander grading by one and Maslov grading by two. Thus, we can form its
mapping cone, which is a bigraded chain complex defined as follows. Letting Rs,d denote
the summand of R in Alexander grading s and Maslov grading d, Ms,d = Rs+1,d+1⊕Rs,d,
endowed with the differential

D(x, y) = (∂x, (Ub − Uc)x − ∂y).

This is quasi-isomorphic to the complex CFK−(K0)/Ub − Uc.

Theorem 3.1. Let K+ be a knot or link with a distinguished positive crossing, and
let Ua and Ub be variables corresponding to the two out-going edges. There is a chain
map f : CFL−(K+) −→ CFL−(K−) whose mapping cone E is quasi-isomorphic to the
mapping cone M of the chain map

Ub − Uc : CFL−(K0) −→ CFL−(K0).

In the case where both strands at K+ belong to the same component of the knot, the
quasi-isomorphism respects the bigrading, while in the case where the strands belong to
different components, Em,s = Mm,s−1.

We will give two proofs of the above theorem. But first, we show that it implies
Theorem 3.1.

Proof. [Theorem 3.1 ⇒ Theorem 1.1] Suppose that K+ is connected. In this case,
skein exact sequence for HFK− follows immediately from Theorem 3.1, and the long

exact sequence associated to a mapping cone. Consider next the case of ĈFK. Then,
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we have that

ĈFK(K+) = CFK−(K+)/Ua = 0

ĈFK(K−) = CFK−(K−)/Ua = 0

ĈFK(K0) = CFK−(K0)/Ua = Ub = 0.

Specializing our exact triangle to Ua = 0, we obtain a long exact sequence connect-

ing connect ĤFK(K+), ĤFK(K−), and H∗(CFK−(K0)/(Ua = 0, Ua = Ub)). Since the
variables Ua and Ub correspond to basepoints Oa and Ob correspond to two different
components of K0, we can identify the latter homology group with HFK−(K0) as desired.

Suppose that K+ consists of two components both of which project to the distin-
guished crossing. This time, we have

ĈFK(K+) = CFK−(K+)/(Ua = 0, Ub = 0)

ĈFK(K−) = CFK−(K−)/(Ua = 0, Ub = 0)

ĈFK(K0) = CFK−(K0)/Ua = 0.

Specializing our exact triangle to Ua = 0 = Ub, we connect ĤFK(K+), ĤFK(K−), and
the homology of the mapping cone of Ua−Ub on CFK−(K0)/(Ua = 0 = Ub). In K0, since
a and b belong to the same strand, multiplication by Ua is homotopic to multiplication
to Ub (this follows from general properties of stabilization, cf. [8, Section 6.1], [5,
Proposition 2.3], see also [6, Lemma 4.21] for a proof using grid diagrams). Thus,
the mapping cone of Ua − Ub on CFK−(K0)/(Ua = 0 = Ub) is quasi-isomorphic to
the tensor product of CFK−(K0) with V . Similarly, for CFK−, we have a triangle
connecting CFK−(K+), CFK−(K−) and CFK−(K0)/(Ua −Ub). Again, since Oa and Ob

correspond to the same component, Ua −Ub is null-homotopic, so the latter complex is
quasi-isomorphic to CFK−(K0) ⊗ W .

Grading shifts are straightforward to verify (see the first proof of Theorem 3.1 for
more discussion on this).

The more general case where K+ consists of more components follows from the same
reasoning as above, but a little bit of extra notation.

We give two proofs of Theorem 3.1. The first is a pseudo-holomorphic curves proof,
and the second combinatorial proof uses grid diagrams.

3.1. Holomorphic curves proof. Our first proof of Theorem 3.1 involves inspecting
a suitable Heegaard diagram, pictured in Figure 2. (This is also the route towards
proving the exact triangle for singular knots appearing in [11].)

Draw a Heegaard diagram near a crossing as shown in Figure 2. In that picture, we
have distinguished circles α1 and β1 which meet in two points x and x′. This diagram
is marked with O = {O1, ..., On}, and X = {A−, A0} ∪ X0, where X0 = {X1, ..., Xn−2}.
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Alternatively, if we leave in α1 and β1, and use X = X0∪{A
−, A0}, we obtain a Heegaard

diagram for K−. Leaving in α1 and β1, and using X = X0 ∪ {A0 ∪ A+}, we obtain a
Heegaard diagram for the knot with positive crossing K+. Finally, using X as the
union of X0 and the two regions marked by B, we obtain a Heegaard diagram for the
smoothing K0 of the crossing.

Note that there are four circles of type O in the picture, two of which correspond to
the outgoing edges a and b, and two of which corresponding to the incoming ones c and
d.

,

β

1αa b

A

1

x

2

2

β

α

x
0

dc

B

− +A A

B

Figure 2. Exact triangle. Markings near a crossing used in in the
first proof of Theorem 3.1.

Clearly, CFK−(K−) has a subcomplex X consisting of configurations which contain
the intersection point x, and a quotient complex Y . Thus, CFK−(K−) can be thought
of as the mapping cone of the map

DB : Y −→ X

gotten by counting Maslov index one holomorphic disks representatives of homology
classes φ which contain exactly one of the regions marked by B (and hence neither of
the regions marked A0 or A−), and also none of the ones marked by the other X0,; i.e.

DB(x) =
∑

y∈S

∑
8

<

:

φ∈π2(x,y)

∣∣ µ(φ) = 1,

Xi(φ) = 0 ∀i = 1, ..., n − 2
B1(φ) + B2(φ) = 1

9

=

;

#M̂(φ) · U
O1(φ)
1 · ... · UOn(φ)

n · y.

The understanding here is that the complex X (and also Y ) is endowed with an induced
differential which counts holomorphic disks which do not cross any of the four basepoints
A0, A−, B1, or B2. (There are, however, no constraints placed on the multiplicity in
A+. It is not difficult to see, though, that the other constraints imply that A+ can be
crossed at most once, and only for the differential within Y ).

Moreover, CFK−(K0) has Y as a subcomplex, with quotient X, and hence, it can be
thought of as the mapping cone of the map

DA− : X −→ Y,
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defined by counting flowlines which contain exactly one of the regions marked by A0 or
A−.

Similarly, there is a subcomplex X ′ of CFK−(K0) consisting of configurations which
contain the intersection point x′. This has a quotient complex we denote by Y ′. More-
over, K+ has a subcomplex isomorphic to Y ′ and quotient complex isomorphic to X ′.
Thus, we can think of CFK−(K+) as a mapping cone of

D′
B : X ′ −→ Y ′

gotten by counting flowlines which contain exactly one of the regions marked by B, and
neither of the regions marked by A0 or A+. Similarly, we can think of CFK−(K0) as
the mapping cone of

DA+ : Y ′ −→ X ′,

which counts flowlines through exactly one of A0 or A+, and neither of the regions
marked by B.

There is an obvious isomorphism I : X −→ X ′, gotten by replacing the component x
by x′. It is straightforward to verify that this is a chain map.

Consider the maps

DA−B : X −→ X and D′
A+B : X ′ −→ X ′,

where here DA−B is defined by counting holomorphic disks modulo translation in Maslov
index one homotopy classes φ with Xj(φ) ≡ 0 ∀j, and satisfying the addition conditions
that

A0(φ) + A−(φ) = 1 and B1(φ) + B2(φ) = 0;

similarly, define DA+B to count holomorphic disks in homotopy classes φ with

A0(φ) + A+(φ) = 1 and B1(φ) + B2(φ) = 0;

Lemma 3.2. The following relations hold:

D ◦ DA−B + DA−B ◦ D + DB ◦ DA = Ua + Ub − Uc − Ud

D′ ◦ DA+B + DA+B ◦ D′ + D+
A ◦ D′

B = Ua + Ub − Uc − Ud,

where D and D′ denote the differentials on X and X ′ respectively, and the right-hand-
side represents multiplication by the scalar (Ua + Ub −Uc −Ud) (thought of as an endo-
morphism of X or X ′). Informally, one can think of DA−B as furnishing a homotopy
between DB ◦ DA− and multiplication by Ua + Ub − Uc − Ud; and DA+B as furnishing a
homotopy between DA+ ◦ D′

B and multiplication by Ua + Ub − Uc − Ud.

Proof. This is analogous to the proof (which uses Gromov’s compactness theorem [3])
that ∂2 = 0 in Floer homology (cf. [10], and [2] for a general discussion).

We consider the case of A−B. Look at ends of one-dimensional moduli spaces connect-
ing x to y for homotopy classes φ which satisfy A0(φ)+A−(φ) = 1 and B1(φ)+B2(φ) = 1.
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These ends consist either of broken flowlines, or boundary degenerations. Broken flow-
lines are parameterized by pairs of homotopy classes of Maslov index one homotopy
classes φ1 ∈ M(x,x′), φ2 ∈ (x′,y) for some x′ ∈ S. These can be partitioned into four
cases:

• A0(φ1) + A+(φ1) = 1 and B1(φ1) + B2(φ1) = 1
• A0(φ1) + A+(φ1) = 0 and B1(φ1) + B2(φ1) = 1
• A0(φ1) + A+(φ1) = 1 and B1(φ1) + B2(φ1) = 0
• A0(φ1) + A+(φ1) = 0 and B1(φ1) + B2(φ1) = 0.

The first types are counted in D ◦DA−B, the second by DA− ◦DB, the third DB ◦DA−,
and the fourth in DA−B ◦ D.

The contributing boundary degenerations in the ends of this moduli space consist of
Maslov index two holomorphic disks with boundary in Tα or Tβ, and which contain
both one point from {A0, A

−} and one in {B1, B2}. There are four of these, one of
which contains each of Oa, Ob, Oc, or Od respectively (compare [11, Lemma 4.3]).

We form now the chain complex C, given by the diagram:

X
D

A−

> Y

Y ′

D′

B◦I
∨

D
A+

> X ′

I◦DB

∨

H

>

where H = −I ◦ DA−B + D′
A+B ◦ I. In fact, the above diagram can be used to form a

chain complex thanks to Lemma 3.2. We denote this complex by E.
Clearly, the above complex has a subcomplex, corresponding to the rightmost column,

which is the mapping cone of −I ◦ DB : Y −→ X ′, which in turn is identified with
CFK−(K−), while its quotient complex is the mapping cone of D′

B ◦ I : X −→ X, which
in turn is identified with CFK−(K+).

Moreover, the bottom row is a subcomplex in turn is identified with CFK−(K0); its
quotient complex is the top row which also is identified with CFK−(K0).

Lemma 3.3. Under the identification of both rows of E with CFK−(K0), the vertical
map D′

B ◦ I + I ◦ DB is homotopic via H to multiplication by Ub − Uc.

Proof. This follows along the lines of Lemma 3.2. We can think of I as the map DA0

gotten by counting holomorphic disks which cross A0. Now the sum of vertical maps
is induced by D′

B ◦ DA0 + DA0 ◦ DB. Moreover, the map DBA0 induces a homotopy of
this map with the count of all boundary degenerations containing both A0 and B. This
latter map is readily seen to correspond to multiplication by Ub − Uc.
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Proof. [of Theorem 3.1] As we have seen, the complex E is simultaneously identified
with the mapping cone of a map f : CFL−(K+) −→ CFK−(K−), and the mapping cone
of a map CFK−(K0) −→ CFK−(K0) which is chain homotopic to multiplication by
Ua − Uc, which in turn is quasi-isomorphic to CFK−(K0)/Ub − Uc, as desired.

We turn our attention to gradings. Configurations X and Y inherit Maslov and
Alexander gradings from either K− or K0; similarly, configurations in X ′ or Y ′ inherit
Maslov and Alexander gradings from either K0 or K−. We assert that all the induced
Maslov gradings coincide. This is clear since the Maslov grading of a given generator is
independent of the placement of points of type X, depending only on the placement of
the O (which coincide for all three links).

Consider next the N = M − 2A-gradings. After setting all Ui = 1, we can isotope
across the O to obtain the same diagram for K− and K+. Thus the N -gradings of the
two diagrams agree. Thus, it follows that (absolute) A-gradings for K− and K+ coincide
for all generators.

,
−

A
A 0

1β

1αa b

x

x
+A

B

B

2

2

β

α

dc

Figure 3. Isotoping across Ob and Oc. In the complex where Ub =
Uc = 1, we can isotope across Ob and Oc without changing homology.
The resulting picture is shown here.

Now consider the horizontal connecting homomorphism f : CFL−(K+) −→ CFK−(K−).
This map clearly preserves both Alexander and Maslov gradings. For example, we can
view the restriction of f to the subcomplex Y ′. The component of the connecting ho-
momorphism is gotten by counting holomorphic disks which cross exactly one of A0 or
A+, a map which simultaneously drops A and M-degree by one, post-composed by the
inverse of I, which simultaneously raises both of these degrees by one.

Using the bigrading grading on E for which the projection map π respects bigradings
so that π : Em,s −→ CFK−

m−1(K+, s), we then have a bigraded identification

Em,s
∼= X ′

m,s ⊕ Y ′
m,s ⊕ Ym+1,s ⊕ Xm+1,s,

where all identifications are made using the diagram for K+. In fact, under the bigraded
isomorphism with the mapping cone of Ub − Uc, we have that

Em,s
∼= Xm+1,s+1 ⊕ Y ′

m,s ⊕ Ym+1,s ⊕ X ′
m+1,s+1,
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where once again all bigradings are induced from K+.
Suppose now that the two strands in K+ belong to the same component. In this case,

we claim K0 and K+ induce the same the bigrading on X. To see this, observe that in
the Ui ≡ 1 complex, a generator x for CFK−(K+), when thought of as an element of
H∗(T

n−1) has grading one greater than the same same element thought of as a generator
for for CFK−(K0)/{Ui ≡ 1}. Thus, we have a bigraded identification

Em,s
∼= Rm+1,s+1 ⊕ Rm,s.

Similarly, if the two strands in K+ belong to different components, then the Alexander
grading of a generator from X thought of as represented in K0 is one less than its
Alexander grading thought of as a represented in K+; hence we have that

Em,s
∼= Rm+1,s ⊕ Rm,s−1.

3.2. Proof using grid diagrams. A disadvantage of the grid diagrams proof is that
there is no grid diagram which represents all three knots K+, K0, and K0; instead, one
has to move the grid diagram, as pictured in Figure 4. By way of explanation, we
have the Heeegaard torus, equipped with O, X, and horizontal circles α. We have two
possible sets of vertical circles β and β′, which differ only in the choice of the first circle
(i.e. βi = β ′

i for i > 1), β1 and β ′
1. We call the two grid diagrams G and G′. The circles

β1 and β ′ meet in two points, one of which is labelled a as shown in the picture. Note
that there is a small triangle bounded by an arc in an α-circle, an arc in β1, and an arc
in β ′

1, which contains A0 in its interior, and whose three vertices are x (on β1), x′ (on
β ′

1) and a.
In the present context, the complex X is generated by generators S(G) which contain

the intersection point x, while X ′ is generated by generators S(G′) which contain the
intersection point x′. These are made into complexes by counting rectangles which
are disjoint from B1 and B2. There are also complexes Y and Y ′ defined using the
complementary sets of generators. As before, we have maps

DA− : X −→ Y

DB : Y −→ X

D′
B : X ′ −→ Y ′

D′
A+ : Y ′ −→ X ′

The first two of these maps is defined by by counting rectangles in G: the first counts
rectangles which contain one of A0 or A−, the second counts rectangles which contain
one of B1 or B2. The second two use rectangles in the diagram G′, the first counts
rectangles containing B1 or B2, and the second counts rectangles containing A0 or A+.
There is also an identification I : X −→ X ′ gotten by moving the intersection point x
to x′.
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B2

A B A+ −1

A0

c

d

a

b

x, x

ββ
,

a

1 1

Figure 4. Grid diagram for the skein relation. Grid diagrams for
a proof of Theorem 3.1.

Lemma 3.4. We have the following relations:

DB ◦ DA−
|X = Ua + Ub − Uc − Ud

DA+ ◦ D′
B|X′ = Ua + Ub − Uc − Ud

Proof. This is essentially a repetition of Lemma 3.2, except, of course, that for grid
diagrams, arguments like Gromov’s compactness theorem can be formulated in purely
combinatorial terms (cf. [6, Proposition 2.8]).

We start with the first equation. Observe that the sum of maps DB ◦DA− +DA− ◦DB

counts polgons obtained by juxtaposing two rectangles, one of which contains A0 or A−,
and the other contains B1 or B2. These polygons cancel in pairs, except for those annuli
of length or width equal to one, which contain both A0 or A− and B1 or B2, of which
there are four, contributing Ua + Ub −Uc − Ud. In principle, there might be alternative
decompositions consisting of a rectangle without either A0, A−, B1, or B2 (and the other
must have one of each pair). But there are no such alternative decompositions with
initial point at X. In a similar vein, it is straightforward to see that DB annihilates X.

The second relation follows similarly.
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According to Lemma 3.4, the following diagram represents a chain complex:

(3)

X
D

A−

−−−→ Y

D′

B
◦I

y
yI◦DB

Y ′
D

A+
−−−→ X ′

Let C be the chain complex for the resolution K0 using β1 in Figure 4, and C ′ be the
chain complex for K0 using β ′

1. An explicit chain homtopy equivalence

Φ: C ′ −→ C

is constructed in [6, Subsection 3.1]. This map is defined by counting pentagons. More
precisely, given x ∈ S(G) and y ∈ S(H), we let Pent(x,y) denote the space of em-
bedded pentagons with the following properties. This space is empty unless x and y

coincide at n − 2 points. An element of Pentβ′β(x,y) is an embedded disk in T, whose
boundary consists of five arcs, each contained in horizontal or vertical circles. Moreover,
under the orientation induced on the boundary of p, we start at the β ′

1-component of x,
traverse the arc of a horizontal circle, meet its corresponding component of y, proceed
to an arc of a vertical circle, meet the corresponding component of x, continue through
another horizontal circle, meet the component of y contained in β1, proceed to an arc in
β1 until we meet the intersection point a ∈ β1∩β ′, and finally, traverse an arc in β ′

1 until
we arrive back at the initial component of x. Finally, all the angles here are required
to be less than straight angles. The space of empty pentagons p ∈ Pentβ′β(x,y) with
x ∩ Int(p) = ∅, is denoted Pent◦β′β.

Given x ∈ S(G′), define

Φ(x) =
∑

y∈S(G′)

∑

p∈Pent◦
β′β

(x,y)

U
O1(p)
1 · · ·UOn(p)

n · y ∈ C−(G).

It is elementary to see that the above map induces a chain homotopy equivalence [6,
Proposition 3.2].

Lemma 3.5. Under the natural identification of the two rows in the above complex
with chain complexes for CFK−(K−), the two vertical maps add up to multiplication by
Ub − Uc.

Proof. Let C be the chain complex for CFK−(K0) appearing in the top row of
Equation (3), and let C ′ be the complex for CFK−(K0) appearing in the bottom row.
Thus, C belongs to the grid diagram G, while C ′ belongs to the grid diagram G′. The
sum of the two vertical maps can be viewed as a chain map V : C −→ C ′, where

V = D′
B ◦ I ◦ ΠX + I ◦ DB ◦ ΠY .

We have a map Φ: C ′ −→ C defined by counting pentagons, as above.
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We will find it convenient to extend the maps DB and D′
B earlier to maps

D̃B : C −→ C and D̃′
B : C ′ −→ C ′,

gotten by counting rectangles which contain both B1 and B2. Similarly, we have a map

D̃A0 and D̃′
A0

defined by counting rectangles which contain A0.
We claim that

(4) Φ ◦ D′
B ◦ I ◦ ΠX = D̃B ◦ D̃A0 .

This is seen as follows. The composite Φ ◦ DB ◦ I ◦ ΠX is a count of polygons, which
are gotten by juxtaposing an empty rectangle starting at an intersection point from
X, followed by an empty pentagon. By filling in the small triangle containing A0, we
obtain a one-to-one correspondence between these polgons, and polygons obtained in
the following way:

(1) juxtapositions of two rectangles, the first of which contains A0 and the second
of which contains B2

(2) juxtapositions of rectangles, the first of which is empty, and the second of which
contains both A0 and B1

(3) the column in G′ through both A0 and and B1.

The first term contibutes D̃B2 ◦ D̃A0. Decomposing the polygon in an alternative way,

we see that the sum of the second two terms contributes D̃B1 ◦ D̃A0. (Note that the
column in G′ through A0 and B1 contributes Uc, which is the same as the contribution
the column in G of the column through A0 and B1.)

Similarly, we claim that

(5) Φ ◦ I ◦ DB ◦ ΠY = D̃A0 ◦ D̃B.

This follows more directly than Equation (4). Filling in the small triangle containing
A0, we obtain a one-to-one correspondence between the polgons counted on both sides.

Adding Equations (4) and (5), we conclude that Φ ◦ V = D̃A0 ◦ D̃B + D̃B ◦ D̃A0 . The
same arguments from Lemma 3.4 show that the following relation holds:

D ◦ D̃A0B + D̃A0B ◦ D = D̃B ◦ D̃A0 + D̃A0 ◦ DB + Ub − Uc;

i.e. Φ ◦ V is homotopic to multiplication by Ub − Uc, as desired.

Proof. [Grid diagram proof of Theorem 3.1.] The proof follows from inspecting the
complex from Equation (3), which we refer to now as E. Again, the two vertical columns
correspond to CFK−(K−) and CFK−(K+) respectively, and so the horizontal maps add
up to give the stated map f . Moreover, according to Lemma 3.5, E is quasi-isomorphic
to the mapping cone of

Ub − Uc : CFK−(K0) −→ CFK−(K0).
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A

2
2B

B 2 2B

2B

A B A+ −1

A 0

c

d

x, x

+ ABA

A B A+ −1

A 0

c

d

x, x x,x

d

c

0A
1 −+ AB

B

x,x

d

c

0A
1 −+ ABA

x,x

d

c

0A
1 −

Figure 5. Proof of Lemma 3.5. In the top row, we have illustrated
the polygons contributing to Φ ◦ DB ◦ I ◦ ΠX , in the second, we have
illustrated the ones contributing to Φ ◦ I ◦ DB ◦ ΠY . The lighter polgon
is always composed first; the dark dots represent initial points. Filling
in the triangle labelled by A0 gives a one-to-one correspondence between

these polygons and those counted in D̃B ◦ D̃A0 + D̃A0 ◦ D̃B.

Gradings can be traced through exactly as in the earlier proof.
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[10] P. S. Ozsváth and Z. Szabó. Holomorphic disks and topological invariants for closed three-

manifolds. Ann. of Math. (2), 159(3):1027–1158, 2004.
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