X is *locally Euclidean* if for all $x \in X$, there exists U open such that $x \in U$, and there exists a homeomorphism $f: U \to f(U) \subset \mathbf{R}^m$ where f(U) is open in \mathbf{R}^m .

Ex: (0,1) is locally Euclidean, but [0,1] is NOT locally Euclidean.

X is an m-manifold if (1) X is locally Euclidean (2) X is T_2

(3) X 2nd countable.

A 1-manifold is a *curve* (ex: the circle S^1)

A 2-manifold is a *surface* (ex: the torus T^2 , the projective plane $\mathbf{R}P^2$, the Klein bottle, $\mathbf{R}P^2 \# \mathbf{R}P^2$).

The support of $\phi: X \to \mathbf{R} = \overline{\phi^{-1}(\mathbf{R} - \{0\})}.$

I.e., $x \notin$ support ϕ iff there exists U open such that $x \in U$ and $\phi(U) = \{0\}$.

Ex:

Let $\{U_1, ..., U_n\}$ be a finite indexed open cover of X.

An indexed family of continuous functions

$$\phi_i: X \to [0,1]$$

is a partition of unity dominated by $\{U_1, ..., U_n\}$ if 1) support $\phi_i \subset U_i$ for all *i*. 2) $\sum_{i=1}^n \phi_i(x) = 1$ for all *x*.

Ex: $\phi_i : \mathbf{R} \to [0,1], \phi_i(x) = \frac{1}{2}$ is a partition of unity dominated by $U_i = \mathbf{R}, i = 1, 2$

Note: partition of unity for an arbitrary open cover will be defined in section 41 (one more condition, which finite covers automatically satisfy, will be needed). Section 39:

A collection \mathcal{A} of subsets of X is *locally finite* if for all $x \in X$, there exists U open such that $x \in U$ and U intersects only finitely many elements of \mathcal{A}

Ex: $\mathcal{A} = \{(n, n+2) \mid n \in \mathbb{Z}\}$ is locally finite.

Ex: $C = \{(n, n+2) \mid n \in \mathbb{Z}_+\}$ is locally finite.

Ex: $\mathcal{D} = \{(0, n) \mid n \in \mathbf{Z}_+\}$ is NOT locally finite.

Ex: A finite collection of sets is locally finite.

The indexed family $\{A_{\alpha} \mid \alpha \in J\}$ is a *locally finite indexed* family in X if for all $x \in X$, there exists U open such that $x \in U$ and U intersects A_{α} for only finitely many α .

Ex: If $A_i = \mathbf{R}$ for all $i \in \mathbf{Z}$, then $\{A_i \mid i \in \mathbf{Z}\}$ is NOT a locally finite indexed family in X, but $\{A_i \mid i \in \mathbf{Z}\}$, as a collection of set(s), is locally finite (since it contains only one set).

A collection \mathcal{A} of subsets of X is *countably locally finite* if \mathcal{A} can be written as a countable union of collections \mathcal{A}_n , each of which is locally finite.

Ex: $\mathcal{D} = \{(-n, n) \mid n \in \mathbf{Z}_+\}$ is countable locally finite. Let $\mathcal{D}_k = \{(-n, n) \mid n \in [k, k+2]\}, k \in 2\mathbf{Z}_+.$

Note $\mathcal{D} = \bigcup_{k \in 2\mathbb{Z}_+} \mathcal{D}_k$ and \mathcal{D}_k is locally finite since it's finite.

Let \mathcal{A} be a collection of subsets of X. A collection \mathcal{B} of subsets of X is a *refinement* of \mathcal{A} if for all $B \in \mathcal{B}$, there exists $A \in \mathcal{B}$ such that $B \subset A$.

If the elements of \mathcal{B} are open then \mathcal{B} is an *open refinement* of \mathcal{A} .

If the elements of \mathcal{B} are closed then \mathcal{B} is a *closed refinement* of \mathcal{A} .

A simply ordered set X is well ordered if every nonempty subset of X has a smallest element (ie $A \subset X, A \neq \emptyset$ implies min(A) exists and $min(A) \in A$).

Ex: \mathbf{Z} is NOT well-ordered. Ex: \mathbf{Z}_+ is well-ordered Ex: \mathbf{R}_+ is NOT well-ordered.

The Well-ordering theorem: If X is a set, there exists an order relation on X that is well-ordered.