Defn: Let \(\{U_1, \ldots, U_n\} \) be a finite indexed open cover of \(X \). An indexed family of continuous functions
\[
\phi_i : X \to [0, 1]
\]
is a partition of unity dominated by \(\{U_1, \ldots, U_n\} \) if
1) support \(\phi_i \subset U_i \) for all \(i \).
2) \(\sum_{i=1}^{n} \phi_i(x) = 1 \) for all \(x \).

Ex: \(f_i : \mathbb{R} \to [0, 1], f_i(x) = \frac{1}{2} \) is a partition of unity dominated by \(U_i = \mathbb{R}, i = 1, 2 \)

Ex: \(\phi_i : \mathbb{R} \to [0, 1], \)
\[
\phi_1(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & 0 \leq x < 1 \\ 1 & x \geq 1 \end{cases}, \quad \phi_2(x) = \begin{cases} 1 & \text{if } x < 0 \\ 1 - x & 0 \leq x < 1 \\ 0 & x \geq 1 \end{cases}
\]
is a partition of unity dominated by
\(U_1 = (-1, \infty), \quad U_2 = (\infty, 2) \)

Note: partition of unity for an arbitrary open cover will be defined in section 41 (one more condition, which finite covers automatically satisfy, will be needed).

Thm 36.1: (Existence of finite partitions of unity): Suppose \(X \) is \(T_4 \) and \(X \subset \bigcup_{i=1}^{n} U_i^{\text{open}} \). Then there exists a partition of unity dominated by \(\{U_1, \ldots, U_n\} \)

Thm 36.2: \(X \) compact \(m \)-mfld, then \(X \) can be imbedded in \(\mathbb{R}^N \) for some \(N \in \mathbb{Z} \).

Section 39:
A collection \(\mathcal{A} \) of subsets of \(X \) is locally finite if for all \(x \in X \), there exists \(U \) open such that \(x \in U \) and \(U \) intersects only finitely many elements of \(\mathcal{A} \).

Ex: \(\mathcal{A} = \{(n, n + 2) \mid n \in \mathbb{Z}\} \) is locally finite.

Ex: \(\mathcal{C} = \{(n, n + 2) \mid n \in \mathbb{Z}_+\} \) is locally finite.

Ex: \(\mathcal{D} = \{(0, n) \mid n \in \mathbb{Z}_+\} \) is NOT locally finite.

Ex: A finite collection of sets is locally finite.

The indexed family \(\{A_\alpha \mid \alpha \in J\} \) is a locally finite indexed family in \(X \) if for all \(x \in X \), there exists \(U \) open such that \(x \in U \) and \(U \) intersects \(A_\alpha \) for only finitely many \(\alpha \).

Ex: If \(A_i = \mathbb{R} \) for all \(i \in \mathbb{Z} \), then \(\{A_i \mid i \in \mathbb{Z}\} \) is NOT a locally finite indexed family in \(X \), but \(\{A_i \mid i \in \mathbb{Z}\} \), as a collection of set(s), is locally finite (since it contains only one set).