$\mathcal{R} P^{n}=\left(\mathcal{R}^{n+1}-\{0\}\right) /(\mathbf{x} \sim t \mathbf{x})$.
Ex: $\mathcal{R} P^{1}=\left(\mathcal{R}^{2}-\{0\}\right) /(\mathbf{x} \sim t \mathbf{x})$
Let $p: \mathcal{R}^{2}-\{0\} \rightarrow\left(\mathcal{R}^{2}-\{0\}\right) /(\mathbf{x} \sim t \mathbf{x}), p(\mathbf{x})=[\mathbf{x}]$ and give $\left.\mathcal{R}^{2}-\{0\}\right) /(\mathbf{x} \sim t \mathbf{x})$ the quotient topology.

Take one representative per equivalence class and determine g :

$$
g: \mathcal{R}^{2}-\{0\} \rightarrow S^{1}, g\left(r e^{i \theta}\right)=e^{2 i \theta} .
$$

Define $f:\left(\mathcal{R}^{2}-\{0\}\right) /(\mathbf{x} \sim t \mathbf{x}) \rightarrow S^{1}, f([\mathbf{x}])=g(\mathbf{x})$ (per thm 22.2).

$$
\begin{gathered}
\mathcal{R}^{2}-\{0\} \\
p \downarrow \\
\left(\mathcal{R}^{2}-\{0\}\right) /(\mathbf{x} \sim t \mathbf{x})-\rightarrow S^{1}
\end{gathered}
$$

Note $(f \circ p)(\mathbf{x})=g(\mathbf{x})$.
Note g is onto and continuous by calc 1 .
Note g is an open map.
Hence g is a quotient map.
Thus by Thm 22.2, f is a homeomorphism.

