21. Metric spaces (continued).

Lemma: If d is a metric on X and $A \subset X$, then $d|_{A \times A}$ is a metric for the subspace topology on A.

Some order topologies are metrizable, some are not.

Thm 20.3': Suppose d_X and d_Y are metrics on X and Y, respectively. Then

 $d((x_1, y_1), (x_2, y_2)) = max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}$ is a metric which induces the product topology on $X \times Y$.

Note the generalization of this metric to countable products does not induce the product topology on countable products. See Thm 20.5 for a metric which does induce the product topology on R^{ω} .

Lemma: If X is a metric space, then X is Hausdorff.

Thm 21.2: Let $f: X \to Y$; let X and Y be metrizable with metrics d_X and d_Y , respectively. Then f is continuous if and only if for every $x \in X$ and for every $\epsilon > 0$, there exists a $\delta > 0$ such that $d_X(x, y) < \delta$ implies $d_Y(f(x), f(y)) < \epsilon$.

Note: $d_X(x,y) < \delta$ implies $d_Y(f(x), f(y)) < \epsilon$. is equivalent to $f(B_X(x,\delta)) \subset B_Y(f(x),\epsilon)$

Lemma 21.2 (the sequence lemma): Let X be a topological space, $A \subset X$. If there exists a sequence of points in A which converge to x, then $x \in \overline{A}$

If X is metrizable, $x \in \overline{A}$ implies there exists a sequence of points in A which converge to x.

Defn: X is said to have a **countable basis at the point** x if there exists a countable collection $\mathcal{B} = \{B_n \mid n \in Z_+\}$ of neighborhoods of x such that if $x \in U^{open}$ implies there exists a $B_i \in \mathcal{B}$ such that $B_i \subset U$

X is **first countable** if X has a countable basis at each of its points.

Lemma: A metrizable space is first countable.

Lemma: If X is first countable, $x \in \overline{A}$ implies there exists a sequence of points in A which converge to x.

Thm 21.3: Let $f : X \to Y$. If f is continuous, then for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x).

Suppose X is first countable. If for every convergent sequence $x_n \to x$ in X, the sequence $f(x_n)$ converges to f(x), then f is continuous.

Lemma 21.4:

 $+: R \times R \to R, +(x, y) = x + y$ is continuous.

 $-: R \times R \to R, -(x, y) = x - y$ is continuous.

 $\cdot : R \times R \to R, \ \cdot (x, y) = xy$ is continuous.

 $\div: R \times (R - \{0\} \to R, \div(x, y) = x/y \text{ is continuous.}$

Thm 21.5: If X is a topological space, and if $f, g: X \to R$ are continuous, then f + g, f - g, $f \cdot g$ are continuous. If $g(x) \neq 0$ for all x, then f/g is continuous.

Defn: Let $f_n : X \to Y$ be a sequence of functions from the set X to the topological space Y. Then the sequence of functions (f_n) converges to the function $f : X \to Y$ if the sequence of points $(f_n(x))$ converges to the point f(x) for all $x \in X$.

Defn: Let $f_n : X \to Y$ be a sequence of functions from the set X to the metric space Y. The sequence of functions (f_n) **converges uniformly** to the function $f : X \to Y$ if for all $\epsilon > 0$, there exists an integer N such that n > N, $x \in X$ implies $d_Y(f_n(x), f(x)) < \epsilon$.

Thm 21.6 (uniform limit theorem):

Let $f_n : X \to Y$ be a sequence of continuous functions from the topological space X to the metric space Y. If (f_n) converges uniformly to f, then fis continuous.